THE CLASSIFICATION OF SELF-DUAL CODES OVER GALOIS RINGS OF LENGTH 4

被引:1
作者
Choi, Whan-Hyuk [1 ]
机构
[1] Kangwon Natl Univ, Dept Math, Chunchon 24341, South Korea
关键词
self-dual codes; classification; Galois ring; mass formula; CONSTRUCTION;
D O I
10.4134/BKMS.b170791
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classification of the self-dual codes over Galois rings GR(p, 2) and GR(p(2) , 2) of length 4 is completed for all primes p up to equivalence in terms of automorphism group. We obtain all inequivalent classes and the number of each classes of self-dual codes for all primes.
引用
收藏
页码:1371 / 1387
页数:17
相关论文
共 19 条
[1]  
[Anonymous], 1994, GRAD TEXTS MATH
[2]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[3]  
Choi WH, 2017, KOREAN J MATH, V25, P379, DOI 10.11568/kjm.2017.25.3.379
[4]  
Choi Whan-Hyuk, 2016, [Korean Journal of Mathematics, 한국수학논문집], V24, P751, DOI 10.11568/kjm.2016.24.4.751
[5]  
Dougherty Steven T., 2010, International Journal of Information and Coding Theory, V1, P171, DOI 10.1504/IJICOT.2010.032133
[6]   Codes over the p-adic integers [J].
Dougherty, ST ;
Park, YH .
DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (01) :65-80
[7]  
Gouvea FQ, 1997, p-adic Numbers
[8]   ERROR DETECTING AND ERROR CORRECTING CODES [J].
HAMMING, RW .
BELL SYSTEM TECHNICAL JOURNAL, 1950, 29 (02) :147-160
[9]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[10]   Construction of quasi-cyclic self-dual codes [J].
Han, Sunghyu ;
Kim, Jon-Lark ;
Lee, Heisook ;
Lee, Yoonjin .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (03) :613-632