"Kerrr" black hole: The lord of the string

被引:106
作者
Smailagic, Anais [2 ]
Spallucci, Euro [1 ,2 ]
机构
[1] Univ Trieste, Dipartimento Fis, Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
关键词
Black holes; String theory; GEOMETRY; GRAVITY; FIELD; MODEL;
D O I
10.1016/j.physletb.2010.03.075
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Kerrr in the title is not a typo. The third "r" stands for regular, in the sense of pathology-free rotating black hole. We exhibit a long search-for, exact, Kerr-like, solution of the Einstein equations with novel features: (i) no curvature ring singularity: (ii) no "anti-gravity" universe with causality violating time-like closed world-lines; (iii) no "super-luminal" matter disk. The ring singularity is replaced by a classical, circular, rotating string with Planck tension representing the inner engine driving the rotation of all the surrounding matter. The resulting geometry is regular and smoothly interpolates among inner Minkowski space, borderline de Sitter and outer Kerr universe. The key ingredient to cure all unphysical features of the ordinary Kerr black hole is the choice of a "non-commutative geometry inspired" matter source as the input for the Einstein equations, in analogy with spherically symmetric black holes described in earlier works. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 49 条
[1]  
ADLER R, 1985, INTRO GEN RELATIVITY
[2]  
[Anonymous], 2004, J. Phys. A, DOI DOI 10.1088/0305-4470/37/28/008
[3]  
[Anonymous], 1998, INT SERIES MONOGRAPH
[4]   Non-commutative geometry inspired charged black holes [J].
Ansoldi, Stefano ;
Nicolini, Piero ;
Smailagic, Anais ;
Spallucci, Euro .
PHYSICS LETTERS B, 2007, 645 (2-3) :261-266
[5]  
ARRAUT I, ARXIV10012226GRQC
[6]   WEAVING A CLASSICAL METRIC WITH QUANTUM THREADS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :237-240
[7]  
BATIC D, ARXIV10011158GRQC
[8]   DYNAMICS OF BUBBLES IN GENERAL-RELATIVITY [J].
BEREZIN, VA ;
KUZMIN, VA ;
TKACHEV, II .
PHYSICAL REVIEW D, 1987, 36 (10) :2919-2944
[9]  
Bleicher M., ARXIV10012211HEPPH
[10]   Regular sources of the Kerr-Schild class for rotating and nonrotating black hole solutions [J].
Burinskii, A ;
Elizalde, E ;
Hildebrandt, SR ;
Magli, G .
PHYSICAL REVIEW D, 2002, 65 (06)