A high-temperature ferromagnetic topological insulating phase by proximity coupling

被引:386
作者
Katmis, Ferhat [1 ,2 ,3 ]
Lauter, Valeria [4 ]
Nogueira, Flavio S. [5 ,6 ]
Assaf, Badih A. [7 ,8 ]
Jamer, Michelle E. [7 ]
Wei, Peng [1 ,2 ,3 ]
Satpati, Biswarup [9 ]
Freeland, John W. [10 ]
Eremin, Ilya [5 ]
Heiman, Don [7 ]
Jarillo-Herrero, Pablo [1 ]
Moodera, Jagadeesh S. [1 ,2 ,3 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Francis Bitter Magnet Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA
[5] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44801 Bochum, Germany
[6] Inst Festkoerper & Werkstoffforsch Dresden, Inst Theoret Solid State Phys, D-01069 Dresden, Germany
[7] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[8] Paris Sci & Lettres Res Univ, CNRS, Ecole Normale Super, Dept Phys, F-75005 Paris, France
[9] Saha Inst Nucl Phys, 1-AF Bidhannagar, Kolkata 64, India
[10] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
MAJORANA FERMIONS; SURFACE;
D O I
10.1038/nature17635
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry(1,)2, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices(3-5). Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena(6,7). In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends similar to 2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator(2,8) could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.
引用
收藏
页码:513 / +
页数:11
相关论文
共 36 条
  • [1] Electrically Detected Interferometry of Majorana Fermions in a Topological Insulator
    Akhmerov, A. R.
    Nilsson, Johan
    Beenakker, C. W. J.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (21)
  • [2] Contribution of Eu 4f states to the magnetic anisotropy of EuO
    Arenholz, E.
    Schmehl, A.
    Schlom, D. G.
    van der Laan, G.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [3] Modified electrical transport probe design for standard magnetometer
    Assaf, B. A.
    Cardinal, T.
    Wei, P.
    Katmis, F.
    Moodera, J. S.
    Heiman, D.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (03)
  • [4] Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
    Chang, Cui-Zu
    Zhang, Jinsong
    Feng, Xiao
    Shen, Jie
    Zhang, Zuocheng
    Guo, Minghua
    Li, Kang
    Ou, Yunbo
    Wei, Pang
    Wang, Li-Li
    Ji, Zhong-Qing
    Feng, Yang
    Ji, Shuaihua
    Chen, Xi
    Jia, Jinfeng
    Dai, Xi
    Fang, Zhong
    Zhang, Shou-Cheng
    He, Ke
    Wang, Yayu
    Lu, Li
    Ma, Xu-Cun
    Xue, Qi-Kun
    [J]. SCIENCE, 2013, 340 (6129) : 167 - 170
  • [5] MAGNETIC-ANISOTROPY IN METALLIC ULTRATHIN FILMS AND RELATED EXPERIMENTS ON COBALT FILMS
    CHAPPERT, C
    BRUNO, P
    [J]. JOURNAL OF APPLIED PHYSICS, 1988, 64 (10) : 5736 - 5741
  • [6] Checkelsky JG, 2014, NAT PHYS, V10, P731, DOI [10.1038/nphys3053, 10.1038/NPHYS3053]
  • [7] Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator
    Chen, Y. L.
    Chu, J. -H.
    Analytis, J. G.
    Liu, Z. K.
    Igarashi, K.
    Kuo, H. -H.
    Qi, X. L.
    Mo, S. K.
    Moore, R. G.
    Lu, D. H.
    Hashimoto, M.
    Sasagawa, T.
    Zhang, S. C.
    Fisher, I. R.
    Hussain, Z.
    Shen, Z. X.
    [J]. SCIENCE, 2010, 329 (5992) : 659 - 662
  • [8] Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators
    Essin, Andrew M.
    Moore, Joel E.
    Vanderbilt, David
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (14)
  • [9] Magnetically Defined Qubits on 3D Topological Insulators
    Ferreira, Gerson J.
    Loss, Daniel
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (10)
  • [10] Superconducting proximity effect and Majorana fermions at the surface of a topological insulator
    Fu, Liang
    Kane, C. L.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (09)