Cs+ and Sr+ ion-exchange properties of microporous tungstates

被引:0
作者
Luca, V [1 ]
Griffith, CS [1 ]
Chronis, H [1 ]
Widjaja, J [1 ]
Li, HJ [1 ]
Scales, N [1 ]
机构
[1] Australian Nucl Sci & Technol Org, Mat & Engn Sci, Menai, NSW 2234, Australia
来源
SCIENTIFIC BASIS FOR NUCLEAR WASTE MANAGEMENT XXVII | 2004年 / 807卷
关键词
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The hydrothermally prepared hexagonal tungsten bronze (HTB) phase displays promising distribution coefficients (K-D) for both Cs+ (2 - 100 ppm) and Sr2+ (0.5 - 60 ppm) in acidic (1M HNO3) radioactive waste simulants. The development of an inorganic ion-exchanger that displays such selectivity has previously eluded researchers in this field. The selectivity for Cs+ and Sr2+ can be modulated by isomorphous substitution of molybdenum into the tungstate framework, and is optimum for material of nominal composition, Na(0.2)Mo(0.03)W(0.97)O(3)(.)zH(2)O (Mo-HTB). Both the parent HTB and Mo-HTB phases display fast ion-exchange kinetics for Cs+ and Sr2+ and cation exchange capacities ca. 50% that of the theoretical capacities of 0.9 and 0.45 mmol.g(-1), respectively. The Mo-HTB adsorbent has a modest tolerance to alkali metal ions such as Na+ and K+ in acidic solutions with total Cs+ and Sr2+ uptake dropping by 66% as the concentration of Na+ increases from 9 mmol.L-1 to 1200 mmol L-1.
引用
收藏
页码:309 / 314
页数:6
相关论文
共 16 条
[1]   Syntheses, crystal structures, and ion-exchange properties of porous titanosilicates, HM(3)Ti(4)O(4)(SiO4)(3)center dot 4H(2)O (M=H+, K+, Cs+), structural analogues of the mineral pharmacosiderite [J].
Behrens, EA ;
Poojary, DM ;
Clearfield, A .
CHEMISTRY OF MATERIALS, 1996, 8 (06) :1236-1244
[2]   TUNGSTEN-OXIDES AND BRONZES - SYNTHESIS, DIFFUSION AND REACTIVITY [J].
GUO, JD ;
WHITTINGHAM, MS .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (23-24) :4145-4164
[3]   Removal of radioactive cesium from nuclear waste solutions with the transition metal hexacyanoferrate ion exchanger CsTreat [J].
Harjula, R ;
Lehto, J ;
Paajanen, A ;
Brodkin, L ;
Tusa, E .
NUCLEAR SCIENCE AND ENGINEERING, 2001, 137 (02) :206-214
[4]   Nb-substitution and Cs+ ion-exchange in the titanosilicate sitinakite [J].
Luca, V ;
Hanna, JV ;
Smith, ME ;
James, M ;
Mitchell, DRG ;
Bartlett, JR .
MICROPOROUS AND MESOPOROUS MATERIALS, 2002, 55 (01) :1-13
[5]   Cesium absorption from acidic solutions using ammonium molybdophosphate on a polyacrylonitrile support (AMP-PAN) [J].
Miller, CJ ;
Olson, AL ;
Johnson, CK .
SEPARATION SCIENCE AND TECHNOLOGY, 1997, 32 (1-4) :37-50
[6]  
Miller J. E., 1997, SAND970771
[7]   Ion exchange of 85Sr, 134Cs and 57Co in sodium titanosilicate and the effect of crystallinity on selectivity [J].
Möller, T ;
Harjula, R ;
Lehto, J .
SEPARATION AND PURIFICATION TECHNOLOGY, 2002, 28 (01) :13-23
[8]   The effect of cell dimensions of hydrous mixed metal oxides with a pyrochlore structure on the ion-exchange properties [J].
Möller, T ;
Clearfield, A ;
Harjula, R .
CHEMISTRY OF MATERIALS, 2001, 13 (12) :4767-4772
[9]   SYNTHESIS OF NOVEL COMPOUNDS WITH THE PYROCHLORE AND HEXAGONAL TUNGSTEN BRONZE STRUCTURES [J].
REIS, KP ;
RAMANAN, A ;
WHITTINGHAM, MS .
JOURNAL OF SOLID STATE CHEMISTRY, 1992, 96 (01) :31-47
[10]   RIETVELD ANALYSIS OF NAXWO3+X/2.YH2O, WHICH HAS THE HEXAGONAL TUNGSTEN BRONZE STRUCTURE [J].
REIS, KP ;
PRINCE, E ;
WHITTINGHAM, MS .
CHEMISTRY OF MATERIALS, 1992, 4 (02) :307-312