Iterated elliptic and hypergeometric integrals for Feynman diagrams

被引:72
|
作者
Ablinger, J. [1 ]
Bluemlein, J. [2 ]
De Freitas, A. [2 ]
van Hoeij, M. [3 ]
Imamoglu, E. [3 ]
Raab, C. G. [4 ]
Radu, C. -S. [1 ]
Schneider, C. [1 ]
机构
[1] Johannes Kepler Univ Linz, RISC, Altenbergerstr 69, A-4040 Linz, Austria
[2] DESY, Deutsch Elektronen Synchrotron, Platanenallee 6, D-15738 Zeuthen, Germany
[3] Florida State Univ, Dept Math, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USA
[4] Johannes Kepler Univ Linz, Inst Algebra, Altenbergerstr 69, A-4040 Linz, Austria
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
OPERATOR MATRIX-ELEMENTS; HEAVY FLAVOR CONTRIBUTIONS; STRUCTURE-FUNCTION F-2(X; DEEP-INELASTIC SCATTERING; DIFFERENTIAL-EQUATIONS; MASTER INTEGRALS; NUMERICAL EVALUATION; PARTITION-FUNCTION; SUNSET DIAGRAMS; SUNRISE GRAPH;
D O I
10.1063/1.4986417
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate 3-loop master integrals for heavy quark correlators and the 3-loop quantum chromodynamics corrections to the rho-parameter. They obey non-factorizing differential equations of second order with more than three singularities, which cannot be factorized in Mellin-N space either. The solution of the homogeneous equations is possible in terms of F-2(1) Gau beta hypergeometric functions at rational argument. In some cases, integrals of this type can be mapped to complete elliptic integrals at rational argument. This class of functions appears to be the next one arising in the calculation of more complicated Feynman integrals following the harmonic polylogarithms, generalized polylogarithms, cyclotomic harmonic polylogarithms, square-root valued iterated integrals, and combinations thereof, which appear in simpler cases. The inhomogeneous solution of the corresponding differential equations can be given in terms of iterative integrals, where the new innermost letter itself is not an iterative integral. A new class of iterative integrals is introduced containing letters in which (multiple) definite integrals appear as factors. For the elliptic case, we also derive the solution in terms of integrals over modular functions and also modular forms, using q-product and series representations implied by Jacobi's nu(i) functions and Dedekind's eta-function. The corresponding representations can be traced back to polynomials out of Lambert-Eisenstein series, having representations also as elliptic polylogarithms, a q-factorial 1/eta(k) (tau), logarithms, and polylogarithms of q and their q-integrals. Due to the specific form of the physical variable x(q) for different processes, different representations do usually appear. Numerical results are also presented. Published by AIP Publishing.
引用
收藏
页数:54
相关论文
共 50 条
  • [31] Evaluation of multiloop multiscale Feynman integrals for precision physics
    Dubovyk, Ievgen
    Freitas, Ayres
    Gluza, Janusz
    Grzanka, Krzysztof
    Hidding, Martijn
    Usovitsch, Johann
    PHYSICAL REVIEW D, 2022, 106 (11)
  • [32] Systematic approximation of multi-scale Feynman integrals
    Borowka, Sophia
    Gehrmann, Thomas
    Hulme, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [33] Decomposition of Feynman integrals on the maximal cut by intersection numbers
    Frellesvig, Hjalte
    Gasparotto, Federico
    Laporta, Stefano
    Mandal, Manoj K.
    Mastrolia, Pierpaolo
    Mattiazzi, Luca
    Mizera, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [34] A study of Feynman integrals with uniform transcendental weights and their symbology
    He, Song
    Li, Zhenjie
    Ma, Rourou
    Wu, Zihao
    Yang, Qinglin
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (10)
  • [35] Some Examples of Calculation of Massless and Massive Feynman Integrals
    Kotikov, Anatoly, V
    PARTICLES, 2021, 4 (03) : 361 - 380
  • [36] The SAGEX review on scattering amplitudes Chapter 4: Multi-loop Feynman integrals
    Bluemlein, Johannes
    Schneider, Carsten
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (44)
  • [37] Reduction of Feynman integrals in the parametric representation III: integrals with cuts
    Chen, Wen
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (12):
  • [38] Genus drop in hyperelliptic Feynman integrals
    Marzucca, Robin
    Mcleod, Andrew J.
    Page, Ben
    Poegel, Sebastian
    Weinzierl, Stefan
    PHYSICAL REVIEW D, 2024, 109 (03)
  • [39] Restrictions of Pfaffian systems for Feynman integrals
    Chestnov, Vsevolod
    Matsubara-Heo, Saiei J.
    Munch, Henrik J.
    Takayama, Nobuki
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [40] MAHLER MEASURE AND INTEGRALS OF HYPERGEOMETRIC FUNCTIONS
    Benferhat, Leila
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 12 (01): : 49 - 59