Iterated elliptic and hypergeometric integrals for Feynman diagrams

被引:72
|
作者
Ablinger, J. [1 ]
Bluemlein, J. [2 ]
De Freitas, A. [2 ]
van Hoeij, M. [3 ]
Imamoglu, E. [3 ]
Raab, C. G. [4 ]
Radu, C. -S. [1 ]
Schneider, C. [1 ]
机构
[1] Johannes Kepler Univ Linz, RISC, Altenbergerstr 69, A-4040 Linz, Austria
[2] DESY, Deutsch Elektronen Synchrotron, Platanenallee 6, D-15738 Zeuthen, Germany
[3] Florida State Univ, Dept Math, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USA
[4] Johannes Kepler Univ Linz, Inst Algebra, Altenbergerstr 69, A-4040 Linz, Austria
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
OPERATOR MATRIX-ELEMENTS; HEAVY FLAVOR CONTRIBUTIONS; STRUCTURE-FUNCTION F-2(X; DEEP-INELASTIC SCATTERING; DIFFERENTIAL-EQUATIONS; MASTER INTEGRALS; NUMERICAL EVALUATION; PARTITION-FUNCTION; SUNSET DIAGRAMS; SUNRISE GRAPH;
D O I
10.1063/1.4986417
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate 3-loop master integrals for heavy quark correlators and the 3-loop quantum chromodynamics corrections to the rho-parameter. They obey non-factorizing differential equations of second order with more than three singularities, which cannot be factorized in Mellin-N space either. The solution of the homogeneous equations is possible in terms of F-2(1) Gau beta hypergeometric functions at rational argument. In some cases, integrals of this type can be mapped to complete elliptic integrals at rational argument. This class of functions appears to be the next one arising in the calculation of more complicated Feynman integrals following the harmonic polylogarithms, generalized polylogarithms, cyclotomic harmonic polylogarithms, square-root valued iterated integrals, and combinations thereof, which appear in simpler cases. The inhomogeneous solution of the corresponding differential equations can be given in terms of iterative integrals, where the new innermost letter itself is not an iterative integral. A new class of iterative integrals is introduced containing letters in which (multiple) definite integrals appear as factors. For the elliptic case, we also derive the solution in terms of integrals over modular functions and also modular forms, using q-product and series representations implied by Jacobi's nu(i) functions and Dedekind's eta-function. The corresponding representations can be traced back to polynomials out of Lambert-Eisenstein series, having representations also as elliptic polylogarithms, a q-factorial 1/eta(k) (tau), logarithms, and polylogarithms of q and their q-integrals. Due to the specific form of the physical variable x(q) for different processes, different representations do usually appear. Numerical results are also presented. Published by AIP Publishing.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] Numerical evaluation of iterated integrals related to elliptic Feynman integrals
    Walden, Moritz
    Weinzierl, Stefan
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 265
  • [2] Feynman integrals and iterated integrals of modular forms
    Adams, Luise
    Weinzierl, Stefan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) : 193 - 251
  • [3] Hypergeometric structures in Feynman integrals
    Bluemlein, J.
    Saragnese, M.
    Schneider, C.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023, 91 (05) : 591 - 649
  • [4] Feynman integrals as A-hypergeometric functions
    de la Cruz, Leonardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [5] Elliptic Feynman integrals and pure functions
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Penante, Brenda
    Tancredi, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [6] Elliptic polylogarithms and Feynman parameter integrals
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Penante, Brenda
    Tancredi, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, (05):
  • [7] The ε-form of the differential equations for Feynman integrals in the elliptic case
    Adams, Luise
    Weinzierl, Stefan
    PHYSICS LETTERS B, 2018, 781 : 270 - 278
  • [8] Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Tancredi, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [9] On epsilon factorized differential equations for elliptic Feynman integrals
    Frellesvig, Hjalte
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [10] All orders structure and efficient computation of linearly reducible elliptic Feynman integrals
    Hidding, Martijn
    Moriello, Francesco
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)