Enhancing magnetic resonance imaging-driven Alzheimer's disease classification performance using generative adversarial learning

被引:46
作者
Zhou, Xiao [1 ,2 ]
Qiu, Shangran [1 ,3 ]
Joshi, Prajakta S. [4 ,5 ]
Xue, Chonghua [1 ]
Killiany, Ronald J. [4 ,6 ,7 ,8 ]
Mian, Asim Z. [6 ]
Chin, Sang P. [2 ,9 ,10 ]
Au, Rhoda [4 ,7 ,8 ,11 ,12 ]
Kolachalama, Vijaya B. [1 ,2 ,8 ,13 ]
机构
[1] Boston Univ, Sch Med, Dept Med, Sect Computat Biomed, 72 E Concord St,Evans 636, Boston, MA 02118 USA
[2] Boston Univ, Dept Comp Sci, Coll Arts & Sci, 111 Cummington St, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, Coll Arts & Sci, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Boston Univ, Sch Med, Dept Anat & Neurobiol, Boston, MA 02118 USA
[5] Boston Univ, Sch Dent Med, Dept Gen Dent, Boston, MA 02215 USA
[6] Boston Univ, Sch Med, Dept Biol, Boston, MA 02118 USA
[7] Boston Univ, Sch Med, Dept Neurol, Boston, MA 02118 USA
[8] Boston Univ, Alzheimers Dis Ctr, Boston, MA 02215 USA
[9] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[10] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[11] Boston Univ, Sch Med, Framingham Heart Study, Boston, MA 02118 USA
[12] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[13] Boston Univ, Fac Comp & Data Sci, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
Alzheimer’ s disease; Magnetic resonance imaging; Magnetic field strength; Deep learning; Generative adversarial network; Fully convolutional network; NEUROIMAGING INITIATIVE ADNI; CENTER NACC DATABASE; QUALITY ASSESSMENT; MRI RECONSTRUCTION; SEGMENTATION; NETWORKS;
D O I
10.1186/s13195-021-00797-5
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Generative adversarial networks (GAN) can produce images of improved quality but their ability to augment image-based classification is not fully explored. We evaluated if a modified GAN can learn from magnetic resonance imaging (MRI) scans of multiple magnetic field strengths to enhance Alzheimer's disease (AD) classification performance. Methods T1-weighted brain MRI scans from 151 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI), who underwent both 1.5-Tesla (1.5-T) and 3-Tesla imaging at the same time were selected to construct a GAN model. This model was trained along with a three-dimensional fully convolutional network (FCN) using the generated images (3T*) as inputs to predict AD status. Quality of the generated images was evaluated using signal to noise ratio (SNR), Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and Natural Image Quality Evaluator (NIQE). Cases from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL, n = 107) and the National Alzheimer's Coordinating Center (NACC, n = 565) were used for model validation. Results The 3T*-based FCN classifier performed better than the FCN model trained using the 1.5-T scans. Specifically, the mean area under curve increased from 0.907 to 0.932, from 0.934 to 0.940, and from 0.870 to 0.907 on the ADNI test, AIBL, and NACC datasets, respectively. Additionally, we found that the mean quality of the generated (3T*) images was consistently higher than the 1.5-T images, as measured using SNR, BRISQUE, and NIQE on the validation datasets. Conclusion This study demonstrates a proof of principle that GAN frameworks can be constructed to augment AD classification performance and improve image quality.
引用
收藏
页数:11
相关论文
共 37 条
  • [1] Beekly DL, 2004, ALZ DIS ASSOC DIS, V18, P270
  • [2] The National Alzheimer's Coordinating Center (NACC) database: The uniform data set
    Beekly, Duane L.
    Ramos, Erin M.
    Lee, William W.
    Deitrich, Woodrow D.
    Jacka, Mary E.
    Wu, Joylee
    Hubbard, Janene L.
    Koepsell, Thomas D.
    Morris, John C.
    Kukull, Walter A.
    [J]. ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2007, 21 (03) : 249 - 258
  • [3] Clinical Trials for Disease-Modifying Therapies in Alzheimer's Disease: A Primer, Lessons Learned, and a Blueprint for the Future
    Cummings, Jeffrey
    Ritter, Aaron
    Zhong, Kate
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2018, 64 : S3 - S22
  • [4] SegSRGAN: Super-resolution and segmentation using generative adversarial networks - Application to neonatal brain MRI
    Delannoy, Quentin
    Chi-Hieu Pham
    Cazorla, Clement
    Tor-Diez, Carlos
    Dolle, Guillaume
    Meunier, Helene
    Bednarek, Nathalie
    Fablet, Ronan
    Passat, Nicolas
    Rousseau, Francois
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 120
  • [5] Reconstruction of multicontrast MR images through deep learning
    Do, Won-Joon
    Seo, Sunghun
    Han, Yoseob
    Ye, Jong Chul
    Choi, Seung Hong
    Park, Sung-Hong
    [J]. MEDICAL PHYSICS, 2020, 47 (03) : 983 - 997
  • [6] Addressing population aging and Alzheimer's disease through the Australian Imaging Biomarkers and Lifestyle study: Collaboration with the Alzheimer's Disease Neuroimaging Initiative
    Ellis, Kathryn A.
    Rowe, Christopher C.
    Villemagne, Victor L.
    Martins, Ralph N.
    Masters, Colin L.
    Salvado, Olivier
    Szoeke, Cassandra
    Ames, David
    [J]. ALZHEIMERS & DEMENTIA, 2010, 6 (03) : 291 - 296
  • [7] Fahimi F, 2020, IEEE T NEURAL NETW L
  • [8] Goodfellow I., 2020, ADV NEUR IN, V63, P139, DOI [DOI 10.1145/3422622, 10.1145/3422622]
  • [9] MedSRGAN: medical images super-resolution using generative adversarial networks
    Gu, Yuchong
    Zeng, Zitao
    Chen, Haibin
    Wei, Jun
    Zhang, Yaqin
    Chen, Binghui
    Li, Yingqin
    Qin, Yujuan
    Xie, Qing
    Jiang, Zhuoren
    Lu, Yao
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (29-30) : 21815 - 21840
  • [10] Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation
    Hagiwara, A.
    Otsuka, Y.
    Hori, M.
    Tachibana, Y.
    Yokoyama, K.
    Fujita, S.
    Andica, C.
    Kamagata, K.
    Irie, R.
    Koshino, S.
    Maekawa, T.
    Chougar, L.
    Wada, A.
    Takemura, M. Y.
    Hattori, N.
    Aoki, S.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (02) : 224 - 230