On the Picard group of the moduli scheme of stable curves in positive characteristic

被引:14
作者
Ballico, E [1 ]
机构
[1] Univ Trent, Dept Math, I-38050 Povo, TN, Italy
关键词
D O I
10.1016/S0022-4049(96)00118-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we prove that the moduli space of genus g stable curves in characteristic p > 0 has (up to torsion) the same Betti numbers for the etale topology as the characteristic 0 moduli space and if p > 84(g - 1) the same Picard group (up to torsion). (C) 1998 Elsevier Science B.V.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 13 条
  • [1] EDIDIN D, 1993, DUKE MATH J, V67, P241
  • [2] EDIDIN D, EQUIVARIANT INTERSEC
  • [3] Fulton W., 2013, INTERSECTION THEORY, DOI DOI 10.1007/978-3-662-02421-8
  • [4] ON THE KODAIRA DIMENSION OF THE MODULI SPACE OF CURVES
    HARRIS, J
    MUMFORD, D
    [J]. INVENTIONES MATHEMATICAE, 1982, 67 (01) : 23 - 86
  • [5] HARTSHORNE A, 1977, ALGEBRAIC GEOMETRY
  • [6] KLEIMAN SL, 1987, P SYMP PURE MATH, V46, P321
  • [7] LAUDAL OA, 1977, LECT NOTES MATH, V687, P150
  • [8] Milne J. S., 1980, PRINCETON MATH SERIE
  • [9] Mumford D., 1977, ENSEIGNEMENT MATH, V23, P39
  • [10] PIKAART M, 1994, MODULI CURVES NONABE