Tangible UI by Object and Material Classification with Radar

被引:3
|
作者
Yeo, Hui-Shyong [1 ]
Ens, Barrett [2 ]
Quigley, Aaron [1 ]
机构
[1] Univ St Andrews, St Andrews, Fife, Scotland
[2] Univ South Australia, Adelaide, SA, Australia
来源
SA'17: SIGGRAPH ASIA 2017 EMERGING TECHNOLOGIES | 2017年
关键词
Radar sensing; tangible interaction; object recognition;
D O I
10.1145/3132818.3132824
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Radar signals penetrate, scatter, absorb and reflect energy into proximate objects and ground penetrating and aerial radar systems are well established. We describe a highly accurate system based on a combination of a monostatic radar (Google Soli), supervised machine learning to support object and material classification based UIs. Based on RadarCat techniques, we explore the development of tangible user interfaces without modification of the objects or complex infrastructures. This affords new forms of interaction with digital devices, proximate objects and micro-gestures.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Multiple Object Classification Using Hybrid Saliency Based Descriptors
    Jalilvand, Ali
    Charkari, Nasrollah Moghadam
    KNOWLEDGE TECHNOLOGY, 2012, 295 : 348 - 351
  • [42] Abandoned Object Detection and Classification Using Deep Embedded Vision
    Qasim, Arbab Muhammad
    Abbas, Naveed
    Ali, Amjid
    Al-Ghamdi, Bandar Ali Al-Rami
    IEEE ACCESS, 2024, 12 : 35539 - 35551
  • [43] SAR object classification using the DAE with a modified triplet restriction
    Tian, Sirui
    Wang, Chao
    Zhang, Hong
    Bhanu, Bir
    IET RADAR SONAR AND NAVIGATION, 2019, 13 (07): : 1081 - 1091
  • [44] Continual Learning for Object Classification: Integrating AutoML for Binary Classification Tasks Within a Modular Dynamic Architecture
    Turner, Daniel
    Cardoso, Pedro J. S.
    Rodrigues, Joao M. F.
    IEEE ACCESS, 2024, 12 : 183725 - 183742
  • [45] RAMP-CNN: A Novel Neural Network for Enhanced Automotive Radar Object Recognition
    Gao, Xiangyu
    Xing, Guanbin
    Roy, Sumit
    Liu, Hui
    IEEE SENSORS JOURNAL, 2021, 21 (04) : 5119 - 5132
  • [46] 300 GHz radar object recognition based on deep neural networks and transfer learning
    Sheeny, Marcel
    Wallace, Andrew
    Wang, Sen
    IET RADAR SONAR AND NAVIGATION, 2020, 14 (10): : 1483 - 1493
  • [47] Exploiting object semantic cues for Multi-label Material Recognition
    Yang, Lingxiao
    Xie, Xiaohua
    NEUROCOMPUTING, 2016, 173 : 1646 - 1654
  • [48] Object Classification and Recognition using Bag-of-Words (BoW) Model
    Ali, Nursabillilah Mohd
    Jun, Soon Wei
    Karis, Mohd Safirin
    Ghazaly, Mariam Md
    Arai, Mohd Shahrieel Mohd
    2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 216 - 220
  • [49] Rotative maximal pattern: A local coloring descriptor for object classification and recognition
    Pang, Junbiao
    Huang, Jing
    Qin, Lei
    Zhang, Weigang
    Qing, Laiyun
    Huang, Qingming
    Yin, Baocai
    INFORMATION SCIENCES, 2017, 405 : 190 - 206
  • [50] Friend or Foe: Exploiting Sensor Failures for Transparent Object Localization and Classification
    Seib, Viktor
    Barthen, Andreas
    Marohn, Philipp
    Paulus, Dietrich
    2016 INTERNATIONAL CONFERENCE ON ROBOTICS AND MACHINE VISION, 2017, 10253