Tangible UI by Object and Material Classification with Radar

被引:3
|
作者
Yeo, Hui-Shyong [1 ]
Ens, Barrett [2 ]
Quigley, Aaron [1 ]
机构
[1] Univ St Andrews, St Andrews, Fife, Scotland
[2] Univ South Australia, Adelaide, SA, Australia
来源
SA'17: SIGGRAPH ASIA 2017 EMERGING TECHNOLOGIES | 2017年
关键词
Radar sensing; tangible interaction; object recognition;
D O I
10.1145/3132818.3132824
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Radar signals penetrate, scatter, absorb and reflect energy into proximate objects and ground penetrating and aerial radar systems are well established. We describe a highly accurate system based on a combination of a monostatic radar (Google Soli), supervised machine learning to support object and material classification based UIs. Based on RadarCat techniques, we explore the development of tangible user interfaces without modification of the objects or complex infrastructures. This affords new forms of interaction with digital devices, proximate objects and micro-gestures.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Shape-Based Object Localization for Descriptive Classification
    Heitz, Geremy
    Elidan, Gal
    Packer, Benjamin
    Koller, Daphne
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 84 (01) : 40 - 62
  • [32] An Inferior Temporal Cortex Model for Object Recognition and Classification
    Efremova, N. A.
    Inui, T.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2014, 41 (06) : 362 - 369
  • [33] Edge information based object classification for NAO robots
    Tarvas, Karl
    Bolotnikova, Anastasia
    Anbarjafari, Gholamreza
    COGENT ENGINEERING, 2016, 3 (01):
  • [34] Target classification based on near-distance radar sensors
    Kruse, F
    Fölster, F
    Ahrholdt, M
    Rohling, H
    Meinecke, MM
    To, TB
    2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, 2004, : 722 - 727
  • [35] Visual classification of waste material for nuclear decommissioning
    Shaukat, Affan
    Gao, Yang
    Kuo, Jeffrey A.
    Bowen, Bob A.
    Mort, Paul E.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 365 - 378
  • [36] A Novel Method for Improving Point Cloud Accuracy in Automotive Radar Object Recognition
    Lu, Guowei
    He, Zhenhua
    Zhang, Shengkai
    Huang, Yanqing
    Zhong, Yi
    Li, Zhuo
    Han, Yi
    IEEE ACCESS, 2023, 11 : 78538 - 78548
  • [37] Developing an On-Road Object Detection System Using Monovision and Radar Fusion
    Hsu, Ya-Wen
    Lai, Yi-Horng
    Zhong, Kai-Quan
    Yin, Tang-Kai
    Perng, Jau-Woei
    ENERGIES, 2020, 13 (01)
  • [38] A Method of Building Radargram with the Ability of Object Discrimination for the Step-Frequency Radar
    Mikhnev, V.
    2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, : 2778 - 2781
  • [39] UWB Material Characterisation and Object Recognition with Applications in Fire and Security
    Salman, R.
    Schultze, T.
    Willms, I.
    2008 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND, VOL 2, PROCEEDINGS, 2008, 2 : 203 - 206
  • [40] Wavelet neural network for 2D object classification
    Pan, Hong
    Jin, Li-Zuo
    Yuan, Xiao-Hui
    Xia, Si-Yu
    Li, Jiu-Xian
    Xia, Liang-Zheng
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1965 - 1968