A Fully Quantum Asymptotic Equipartition Property

被引:232
作者
Tomamichel, Marco [1 ]
Colbeck, Roger [1 ,2 ]
Renner, Renato [1 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Asymptotic equipartition property; quantum information; Renyi entropies; smooth entropies; von Neumann entropy;
D O I
10.1109/TIT.2009.2032797
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The classical asymptotic equipartition property is the statement that, in the limit of a large number of identical repetitions of a random experiment, the output sequence is virtually certain to come from the typical set, each member of which is almost equally likely. In this paper, a fully quantum generalization of this property is shown, where both the output of the experiment and side information are quantum. An explicit bound on the convergence is given, which is independent of the dimensionality of the side information. This naturally leads to a family of Renyi-like quantum conditional entropies, for which the von Neumann entropy emerges as a special case.
引用
收藏
页码:5840 / 5847
页数:8
相关论文
共 25 条
[1]  
ALICKI R, 2003, CONTINUITY QUANTUM M
[2]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[3]   On quantum fidelities and channel capacities [J].
Barnum, H ;
Knill, E ;
Nielsen, MA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1317-1329
[4]  
Bhatia Rajendra, 1997, Matrix analysis
[5]  
Cover T.M., 1991, WILEY SER TELECOMMUN
[6]  
DATTA N, 2008, SMOOTH RENYI ENTROPI
[7]  
DATTA N, 2008, MIN MAX RELATIVE ENT
[8]  
GILCHRIST A, 2004, DISTANCE MEASURES CO
[9]   Jensen's operator inequality [J].
Hansen, F ;
Pedersen, GK .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :553-564
[10]  
Hayashi M., 2006, Quantum Information: An Introduction