Fluids at the Nanoscale: From Continuum to Subcontinuum Transport

被引:242
作者
Kavokine, Nikita [1 ]
Netz, Roland R. [2 ]
Bocquet, Lyderic [1 ]
机构
[1] Univ Paris Diderot, Sorbonne Univ, Univ PSL,Sorbonne Paris Cite, Lab Phys Ecole Normale Super LPENS,CNRS,ENS,UMR, F-75005 Paris, France
[2] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
来源
ANNUAL REVIEW OF FLUID MECHANICS, VOL 53 | 2021年 / 53卷
基金
欧盟地平线“2020”;
关键词
nanofluidics; slippage; ion transport; subcontinuum; non-mean-field; statistical mechanics; IONIC COULOMB-BLOCKADE; SINGLE-FILE WATER; MOLECULAR-TRANSPORT; MASS-TRANSPORT; 1/F NOISE; CARBON; FLOW; PERMEATION; MEMBRANES; NANOPORES;
D O I
10.1146/annurev-fluid-071320-095958
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Nanofluidics has firmly established itself as a new field in fluid mechanics, as novel properties have been shown to emerge in fluids at the nanometric scale. Thanks to recent developments in fabrication technology, artificial nanofluidic systems are now being designed at the scale of biological nanopores. This ultimate step in scale reduction has pushed the development of new experimental techniques and new theoretical tools, bridging fluid mechanics, statistical mechanics, and condensed matter physics. This review is intended as a toolbox for fluids at the nanometer scale. After presenting the basic equations that govern fluid behavior in the continuum limit, we show how these equations break down and new properties emerge in molecular-scale confinement. A large number of analytical estimates and physical arguments are given to organize the results and different limits.
引用
收藏
页码:377 / 410
页数:34
相关论文
共 153 条
[71]   Superionic state in double-layer capacitors with nanoporous electrodes [J].
Kondrat, S. ;
Kornyshev, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (02)
[72]   ANALYTICAL EXPRESSION FOR THE OSCILLATORY STRUCTURAL SURFACE FORCE [J].
KRALCHEVSKY, PA ;
DENKOV, ND .
CHEMICAL PHYSICS LETTERS, 1995, 240 (04) :385-392
[73]  
Landau L, 1977, STAT PHYS 2, P360
[74]  
Lauga E., 2007, Microfluidics: the No-Slip Boundary Condition, P1219, DOI [10.48550/arXiv.cond-mat/0501557, DOI 10.48550/ARXIV.COND-MAT/0501557]
[75]   Single-File Charge Storage in Conducting Nanopores [J].
Lee, Alpha A. ;
Kondrat, Svyatoslav ;
Kornyshev, Alexei A. .
PHYSICAL REVIEW LETTERS, 2014, 113 (04)
[76]   Coherence Resonance in a Single-Walled Carbon Nanotube Ion Channel [J].
Lee, Chang Young ;
Choi, Wonjoon ;
Han, Jae-Hee ;
Strano, Michael S. .
SCIENCE, 2010, 329 (5997) :1320-1324
[77]   Large Apparent Electric Size of Solid-State Nanopores Due to Spatially Extended Surface Conduction [J].
Lee, Choongyeop ;
Joly, Laurent ;
Siria, Alessandro ;
Biance, Anne-Laure ;
Fulcrand, Remy ;
Bocquet, Lyderic .
NANO LETTERS, 2012, 12 (08) :4037-4044
[78]  
Lee J, 2014, NAT NANOTECHNOL, V9, P317, DOI [10.1038/NNANO.2014.28, 10.1038/nnano.2014.28]
[79]   The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review [J].
Lei, Wenwen ;
Rigozzi, Michelle K. ;
McKenzie, David R. .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (02)
[80]   Electrostatics of ions inside the nanopores and trans-membrane channels [J].
Levin, Y. .
EUROPHYSICS LETTERS, 2006, 76 (01) :163-169