The Design of Wideband Quasi-Yagi Elliptic Dipole Antenna with Split-ring Resonator (SRR) Structure

被引:0
作者
Sun, Yuanhua [1 ]
Liu, Yihe [1 ]
Tang, Nianqing [1 ]
Xu, Dajun [1 ]
Li, Yao [1 ]
Yu, Yongyan [1 ]
Zhang, Kai [1 ]
Gou, Quandeng [1 ]
Du, Zhibo [2 ]
机构
[1] Neijiang Normal Univ, Sch Comp Sci, Neijiang City, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Comp Sci, Chengdu, Sichuan, Peoples R China
来源
2018 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY (IWAT) | 2018年
关键词
Gain enhancement; Widthband; Quasi-Yagi antenna; Elliptic Dipole Antenna; Split-ring Resonator;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A gain enhancement wideband Quasi-Yagi elliptic dipole antenna is presented in this letter. The gain enhancement is achieved by loading with spliting-ring resonator (SRR) structures in the endfire direction while broad bandwidth is realized by using a microstrip-to-coplanar balun and elliptic dipole elements. The measurement results show the SRRs-loaded antenna presents around 5GHz-8GHz dB gain in the whole working band (5GHz-11GHz), which is around 2 dB more than the unloaded one. This antenna can be used in wireless communication systems for its advantages of broad bandwidth, endfire radiation and high gain.
引用
收藏
页数:3
相关论文
共 9 条
[1]   Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines [J].
Baena, JD ;
Bonache, J ;
Martín, F ;
Sillero, RM ;
Falcone, F ;
Lopetegi, T ;
Laso, MAG ;
García-García, J ;
Gil, I ;
Portillo, MF ;
Sorolla, M .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (04) :1451-1461
[2]  
Caloz C, 2006, ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS: THE ENGINEERING APPROACH, P1
[3]   Enhancement of Radiation Along the Ground Plane From a Horizontal Dipole Located Close to It [J].
Huang, Ying ;
De, Arijit ;
Zhang, Yu ;
Sarkar, Tapan K. ;
Carlo, Jeffrey .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2008, 7 :294-297
[4]   Composite right/left-handed transmission line metamaterials [J].
Lai, A ;
Caloz, C ;
Itoh, T .
IEEE MICROWAVE MAGAZINE, 2004, 5 (03) :34-50
[5]   Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial [J].
Ma, Y. G. ;
Wang, P. ;
Chen, X. ;
Ong, C. K. .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[6]   Magnetism from conductors and enhanced nonlinear phenomena [J].
Pendry, JB ;
Holden, AJ ;
Robbins, DJ ;
Stewart, WJ .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (11) :2075-2084
[7]   Electric-field-coupled resonators for negative permittivity metamaterials [J].
Schurig, D ;
Mock, JJ ;
Smith, DR .
APPLIED PHYSICS LETTERS, 2006, 88 (04) :1-3
[8]   An Octave-Bandwidth Half Maxwell Fish-Eye Lens Antenna Using Three-Dimensional Gradient-Index Fractal Metamaterials [J].
Xu, He-Xiu ;
Wang, Guang-Ming ;
Tao, Zui ;
Cai, Tong .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (09) :4823-4828
[9]   Miniaturization of 3-D Anistropic Zero-Refractive-Index Metamaterials With Application to Directive Emissions [J].
Xu, He-Xiu ;
Wang, Guang-Ming ;
Cai, Tong .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (06) :3141-3149