The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation

被引:53
作者
Wu, Qiong [1 ]
Madany, Pasil [1 ]
Dobson, Jason R. [1 ]
Schnabl, Jake M. [1 ]
Sharma, Soni [2 ]
Smith, Tara C. [1 ]
van Wijnen, Andre J. [3 ]
Stein, Janet L. [4 ,5 ]
Lian, Jane B. [4 ,5 ]
Stein, Gary S. [4 ,5 ]
Muthuswami, Rohini [2 ]
Imbalzano, Anthony N. [1 ]
Nickerson, Jeffrey A. [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Cell & Dev Biol, Worcester, MA 01655 USA
[2] Jawaharlal Nehru Univ, Sch Life Sci, Delhi, India
[3] Mayo Clin, Dept Biochem & Mol Biol, Rochester, MN USA
[4] Univ Vermont, Coll Med, Dept Biochem, Burlington, VT 05405 USA
[5] Univ Vermont, Coll Med, Vermont Canc Ctr Basic & Translat Res, Burlington, VT USA
关键词
breast cancer; metabolism; lipogenesis; gene regulation; BRG1; FATTY-ACID SYNTHASE; ATP-CITRATE LYASE; MAMMALIAN SWI/SNF COMPLEXES; COA-CARBOXYLASE-ALPHA; THERAPEUTIC TARGET; ANTITUMOR-ACTIVITY; MOLECULAR-CLONING; EPITHELIAL-CELLS; LUNG-CANCER; EXPRESSION;
D O I
10.18632/oncotarget.9505
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cancer cells reprogram cellular metabolism to meet the demands of growth. Identification of the regulatory machinery that regulates cancer-specific metabolic changes may open new avenues for anti-cancer therapeutics. The epigenetic regulator BRG1 is a catalytic ATPase for some mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is a well-characterized tumor suppressor in some human cancers, but is frequently overexpressed without mutation in other cancers, including breast cancer. Here we demonstrate that BRG1 upregulates de novo lipogenesis and that this is crucial for cancer cell proliferation. Knockdown of BRG1 attenuates lipid synthesis by impairing the transcription of enzymes catalyzing fatty acid and lipid synthesis. Remarkably, exogenous addition of palmitate, the key intermediate in fatty acid synthesis, rescued the cancer cell proliferation defect caused by BRG1 knockdown. Our work suggests that targeting BRG1 to reduce lipid metabolism and, thereby, to reduce proliferation, has promise for epigenetic therapy in triple negative breast cancer.
引用
收藏
页码:38270 / 38281
页数:12
相关论文
共 71 条
[1]   The Lipogenesis Pathway as a Cancer Target [J].
Abramson, Hanley N. .
JOURNAL OF MEDICINAL CHEMISTRY, 2011, 54 (16) :5615-5638
[2]   BRG1 Is a Prognostic Marker and Potential Therapeutic Target in Human Breast Cancer [J].
Bai, Jin ;
Mei, Pengjin ;
Zhang, Cuipeng ;
Chen, Feifei ;
Li, Chen ;
Pan, Zhenqiang ;
Liu, Hui ;
Zheng, Junnian .
PLOS ONE, 2013, 8 (03)
[3]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[4]   RNA interference-mediated silencing of the Acetyl-CoA-Carboxylase-α gene induces growth inhibition and apoptosis of prostate cancer cells [J].
Brusselmans, K ;
De Schrijver, E ;
Verhoeven, G ;
Swinnen, JV .
CANCER RESEARCH, 2005, 65 (15) :6719-6725
[5]   Cancer Cell Metabolism: One Hallmark, Many Faces [J].
Cantor, Jason R. ;
Sabatini, David M. .
CANCER DISCOVERY, 2012, 2 (10) :881-898
[6]   Acetyl-CoA carboxylase α is essential to breast cancer cell survival [J].
Chajes, Veronique ;
Cambot, Marie ;
Moreau, Karen ;
Lenoir, Gilbert M. ;
Joulin, Virginie .
CANCER RESEARCH, 2006, 66 (10) :5287-5294
[7]   SWI/SNF Chromatin Remodeling Enzyme ATPases Promote Cell Proliferation in Normal Mammary Epithelial Cells [J].
Cohet, Nathalie ;
Stewart, Kathleen M. ;
Mudhasani, Rajini ;
Asirvatham, Ananthi J. ;
Mallappa, Chandrashekara ;
Imbalzano, Karen M. ;
Weaver, Valerie M. ;
Imbalzano, Anthony N. ;
Nickerson, Jeffrey A. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2010, 223 (03) :667-678
[8]   Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells [J].
Corominas-Faja, Bruna ;
Cuyas, Elisabet ;
Gumuzio, Juan ;
Bosch-Barrera, Joaquim ;
Leis, Olatz ;
Martin, Angel G. ;
Menendez, Javier A. .
ONCOTARGET, 2014, 5 (18) :8306-8316
[9]   Cellular Fatty Acid Metabolism and Cancer [J].
Currie, Erin ;
Schulze, Almut ;
Zechner, Rudolf ;
Walther, Tobias C. ;
Farese, Robert V., Jr. .
CELL METABOLISM, 2013, 18 (02) :153-161
[10]   Links between metabolism and cancer [J].
Dang, Chi V. .
GENES & DEVELOPMENT, 2012, 26 (09) :877-890