Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods

被引:63
作者
Eavani, Harini [1 ]
Habes, Mohamad [1 ]
Satterthwaite, Theodore D. [2 ]
An, Yang [3 ]
Hsieh, Meng-Kang [1 ]
Honnorat, Nicolas [1 ]
Erus, Guray [1 ]
Doshi, Jimit [1 ]
Ferrucci, Luigi [3 ]
Beason-Held, Lori L. [3 ]
Resnick, Susan M. [3 ]
Davatzikos, Christos [1 ]
机构
[1] Univ Penn, Ctr Biomed Image Comp & Analyt, Philadelphia, PA 19104 USA
[2] Univ Penn, Brain Behav Lab, Dept Psychiat, Philadelphia, PA 19104 USA
[3] NIA, Baltimore, MD 21224 USA
关键词
Heterogeneity brain aging; Functional connectivity; Structural MRI; Resting-state fMRI; MILD COGNITIVE IMPAIRMENT; MODE NETWORK ACTIVITY; CONFOUND REGRESSION; ALZHEIMERS-DISEASE; MOTION ARTIFACT; OLDER-ADULTS; CONNECTIVITY; AGE; SEGMENTATION; FMRI;
D O I
10.1016/j.neurobiolaging.2018.06.013
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Disentangling the heterogeneity of brain aging in cognitively normal older adults is challenging, as multiple co-occurring pathologic processes result in diverse functional and structural changes. Capitalizing on machine learning methods applied to magnetic resonance imaging data from 400 participants aged 50 to 96 years in the Baltimore Longitudinal Study of Aging, we constructed normative cross-sectional brain aging trajectories of structural and functional changes. Deviations from typical trajectories identified individuals with resilient brain aging and multiple subtypes of advanced brain aging. We identified 5 distinct phenotypes of advanced brain aging. One group included individuals with relatively extensive structural and functional loss and high white matter hyperintensity burden. Another subgroup showed focal hippocampal atrophy and lower posterior-cingulate functional coherence, low white matter hyperintensity burden, and higher medial-temporal connectivity, potentially reflecting high brain tissue reserve counterbalancing brain loss that is consistent with early stages of Alzheimer's disease. Other subgroups displayed distinct patterns. These results indicate that brain changes should not be measured seeking a single signature of brain aging but rather via methods capturing heterogeneity and subtypes of brain aging. Our findings inform future studies aiming to better understand the neurobiological underpinnings of brain aging imaging patterns. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 40 条
  • [1] [Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms, DOI 10.1007/978-1-4757-0450-1_3
  • [2] Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state functional MRI study
    Bai, Feng
    Zhang, Zhijun
    Yu, Hui
    Shi, Yongmei
    Yuan, Yonggui
    Zhu, Wanlin
    Zhang, Xiangrong
    Qian, Yun
    [J]. NEUROSCIENCE LETTERS, 2008, 438 (01) : 111 - 115
  • [3] Stability of Default-Mode Network Activity in the Aging Brain
    Beason-Held, L. L.
    Kraut, M. A.
    Resnick, S. M.
    [J]. BRAIN IMAGING AND BEHAVIOR, 2009, 3 (02) : 123 - 131
  • [4] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [5] Varied effects of age-related neuropathologies on the trajectory of late life cognitive decline
    Boyle, Patricia A.
    Yang, Jingyun
    Yu, Lei
    Leurgans, Sue E.
    Capuano, Ana W.
    Schneider, Julie A.
    Wilson, Robert S.
    Bennett, David A.
    [J]. BRAIN, 2017, 140 : 804 - 812
  • [6] Extending the rand, adjusted rand and jaccard indices to fuzzy partitions
    Brouwer, Roelof K.
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2009, 32 (03) : 213 - 235
  • [7] Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction
    Cherubini, Andrea
    Caligiuri, Maria Eugenia
    Peran, Patrice
    Sabatini, Umberto
    Cosentino, Carlo
    Amato, Francesco
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2016, 20 (05) : 1232 - 1239
  • [8] Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
    Ciric, Rastko
    Wolf, Daniel H.
    Power, Jonathan D.
    Roalf, David R.
    Baum, Graham L.
    Ruparel, Kosha
    Shinohara, Russell T.
    Elliott, Mark A.
    Eickhoff, Simon B.
    Davatzikos, Christos
    Gur, Ruben C.
    Gur, Raquel E.
    Bassett, Danielle S.
    Satterthwaite, Theodore D.
    [J]. NEUROIMAGE, 2017, 154 : 174 - 187
  • [9] Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers
    Cole, James H.
    Franke, Katja
    [J]. TRENDS IN NEUROSCIENCES, 2017, 40 (12) : 681 - 690
  • [10] Validating fuzzy partitions obtained through c-shells clustering
    Dave, RN
    [J]. PATTERN RECOGNITION LETTERS, 1996, 17 (06) : 613 - 623