Optimal working point in digitized quantum annealing

被引:11
|
作者
Mbeng, Glen Bigan [1 ]
Arceci, Luca [1 ]
Santoro, Giuseppe E. [1 ,2 ,3 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[3] CNR, IOM Democritos Natl Simulat Ctr, Via Bonomea 265, I-34136 Trieste, Italy
基金
欧盟地平线“2020”;
关键词
DYNAMICS;
D O I
10.1103/PhysRevB.100.224201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a study of the digitized quantum annealing protocol proposed by R. Barends et al. [Nature (London) 534, 222 (21 )]. Our analysis, performed on the benchmark case of a transverse Ising chain problem, shows that the algorithm has a well-defined optimal working point for the annealing time tau(opt)(P) scaling as tau(opt)( )(P)similar to P( )where P is the number of digital Trotter steps, beyond which the residual energy error shoots up toward the value characteristic of the maximally disordered state. We present an analytical analysis for the translationally invariant transverse Ising chain case, but our numerical evidence suggests that this scenario is more general, surviving, for instance, the presence of disorder.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Optimal piecewise linear approximation of digitized curves
    Manis, G
    Papakonstantinou, G
    Tsanakas, P
    DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 1079 - 1081
  • [32] Fixed-Point Quantum Search with an Optimal Number of Queries
    Yoder, Theodore J.
    Low, Guang Hao
    Chuang, Isaac L.
    PHYSICAL REVIEW LETTERS, 2014, 113 (21)
  • [33] Optimal Solving of a Scheduling Problem Using Quantum Annealing Metaheuristics on the D-Wave Quantum Solver
    Bozejko, Wojciech
    Klempous, Ryszard
    Pempera, Jaroslaw
    Rozenblit, Jerzy
    Smutnicki, Czeslaw
    Uchronski, Mariusz
    Wodecki, Mieczyslaw
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (01): : 196 - 208
  • [34] Portfolio optimization with digitized counterdiabatic quantum algorithms
    Hegade, N. N.
    Chandarana, P.
    Paul, K.
    Chen, Xi
    Albarran-Arriagada, F.
    Solano, E.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [35] Optimal box contraction for solving linear systems via simulated and quantum annealing
    Suresh, Sanjay
    Suresh, Krishnan
    ENGINEERING OPTIMIZATION, 2024,
  • [36] Sampling diverse near-optimal solutions via algorithmic quantum annealing
    Mohseni, Masoud
    Rams, Marek M.
    Isakov, Sergei, V
    Eppens, Daniel
    Pielawa, Susanne
    Strumpfer, Johan
    Boixo, Sergio
    Neven, Hartmut
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [37] Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing
    Hegade, Narendra N.
    Paul, Koushik
    Ding, Yongcheng
    Sanz, Mikel
    Albarran-Arriagada, F.
    Solano, Enrique
    Chen, Xi
    PHYSICAL REVIEW APPLIED, 2021, 15 (02):
  • [38] Digitized counterdiabatic quantum algorithms for logistics scheduling
    Dalal, Archismita
    Montalban, Iraitz
    Hegade, Narendra N.
    Cadavid, Alejandro Gomez
    Solano, Enrique
    Awasthi, Abhishek
    Vodola, Davide
    Jones, Caitlin
    Weiss, Horst
    Fuechsel, Gernot
    PHYSICAL REVIEW APPLIED, 2024, 22 (06):
  • [39] Digitized adiabatic quantum computing with a superconducting circuit
    R. Barends
    A. Shabani
    L. Lamata
    J. Kelly
    A. Mezzacapo
    U. Las Heras
    R. Babbush
    A. G. Fowler
    B. Campbell
    Yu Chen
    Z. Chen
    B. Chiaro
    A. Dunsworth
    E. Jeffrey
    E. Lucero
    A. Megrant
    J. Y. Mutus
    M. Neeley
    C. Neill
    P. J. J. O’Malley
    C. Quintana
    P. Roushan
    D. Sank
    A. Vainsencher
    J. Wenner
    T. C. White
    E. Solano
    H. Neven
    John M. Martinis
    Nature, 2016, 534 : 222 - 226
  • [40] Digitized Counterdiabatic Quantum Algorithm for Protein Folding
    Chandarana, Pranav
    Hegade, Narendra N.
    Montalban, Iraitz
    Solano, Enrique
    Chen, Xi
    PHYSICAL REVIEW APPLIED, 2023, 20 (01)