Deep learning-based integration of genetics with registry data for stratification of schizophrenia and depression

被引:10
作者
Allesoe, Rosa Lundbye [1 ,2 ]
Nudel, Ron [1 ,3 ]
Thompson, Wesley K. [3 ,4 ,5 ]
Wang, Yunpeng [6 ]
Nordentoft, Merete [1 ,3 ,7 ]
Borglum, Anders D. [3 ,8 ,9 ,10 ]
Hougaard, David M. [3 ,11 ]
Werge, Thomas [3 ,4 ,7 ]
Rasmussen, Simon [2 ]
Benros, Michael Eriksen [1 ,3 ,12 ]
机构
[1] Copenhagen Univ Hosp, Copenhagen Res Ctr Mental Hlth, Mental Hlth Ctr Copenhagen, Copenhagen, Denmark
[2] Univ Copenhagen, Novo Nordisk Fdn, Fac Hlth & Med Sci, Ctr Prot Res, Copenhagen, Denmark
[3] Lundbeck Fdn Initiat Integrat Psychiat Res, iPSYCH, Aarhus, Denmark
[4] Inst Biol Psychiat, Mental Hlth Ctr Sct Hans, Mental Hlth Serv Copenhagen, Roskilde, Denmark
[5] Univ Calif San Diego, Herbert Wertheim Sch Publ Hlth & Human Longev Sci, San Diego, CA 92103 USA
[6] Univ Oslo, Dept Psychol, Lifespan Changes Brain & Cognit LCBC, Forskningsveien 3A, N-0317 Oslo, Norway
[7] Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, Copenhagen, Denmark
[8] Aarhus Univ, Dept Biomed, Aarhus, Denmark
[9] iSEQ, Ctr Integrat Sequencing, Aarhus, Denmark
[10] Aarhus Genome Ctr, Aarhus, Denmark
[11] Statens Serum Inst, Ctr Neonatal Screening, Dept Congenital Disorders, Copenhagen, Denmark
[12] Univ Copenhagen, Fac Hlth & Med Sci, Dept Immunol & Microbiol, Copenhagen, Denmark
关键词
PREDICTION; SYMPTOMS; DISEASE; RISK;
D O I
10.1126/sciadv.abi7293
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Currently, psychiatric diagnoses are, in contrast to most other medical fields, based on subjective symptoms and observable signs and call for new and improved diagnostics to provide the most optimal care. On the basis of a deep learning approach, we performed unsupervised patient stratification of 19,636 patients with depression [major depressive disorder (MDD)] and/or schizophrenia (SCZ) and 22,467 population controls from the iPSYCH2012 case cohort. We integrated data of disorder severity, history of mental disorders and disease comorbidities, genetics, and medical birth data. From this, we stratified the individuals in six and seven unique clusters for MDD and SCZ, respectively. When censoring data until diagnosis, we could predict MDD clusters with areas under the curve (AUCs) of 0.54 to 0.80 and SCZ clusters with AUCs of 0.71 to 0.86. Overall cases and controls could be predicted with an AUC of 0.81, illustrating the utility of data-driven subgrouping in psychiatry.
引用
收藏
页数:12
相关论文
共 45 条
[1]   Long-term trajectories of positive and negative symptoms in first episode psychosis: A 10 year follow-up study in the OPUS cohort [J].
Austin, Stephen F. ;
Mors, Ole ;
Budtz-Jorgensen, Esben ;
Secher, Rikke Gry ;
Hjorthoj, Carsten R. ;
Bertelsen, Mette ;
Jeppesen, Pia ;
Petersen, Lone ;
Thorup, Anne ;
Nordentoft, Merete .
SCHIZOPHRENIA RESEARCH, 2015, 168 (1-2) :84-91
[2]   Autoimmune diseases and infections as risk factors for schizophrenia [J].
Benros, Michael E. ;
Mortensen, Preben B. ;
Eaton, William W. .
NEUROIMMUNOMODULATION IN HEALTH AND DISEASE II, 2012, 1262 :56-66
[3]   Machine learning for genetic prediction of psychiatric disorders: a systematic review [J].
Bracher-Smith, Matthew ;
Crawford, Karen ;
Escott-Price, Valentina .
MOLECULAR PSYCHIATRY, 2021, 26 (01) :70-79
[4]   The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 [J].
Buniello, Annalisa ;
MacArthur, Jacqueline A. L. ;
Cerezo, Maria ;
Harris, Laura W. ;
Hayhurst, James ;
Malangone, Cinzia ;
McMahon, Aoife ;
Morales, Joannella ;
Mountjoy, Edward ;
Sollis, Elliot ;
Suveges, Daniel ;
Vrousgou, Olga ;
Whetzel, Patricia L. ;
Amode, Ridwan ;
Guillen, Jose A. ;
Riat, Harpreet S. ;
Trevanion, Stephen J. ;
Hall, Peggy ;
Junkins, Heather ;
Flicek, Paul ;
Burdett, Tony ;
Hindorff, Lucia A. ;
Cunningham, Fiona ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1005-D1012
[5]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[6]   Genome-wide association studies in psychiatry: what have we learned? [J].
Collins, Ann L. ;
Sullivan, Patrick F. .
BRITISH JOURNAL OF PSYCHIATRY, 2013, 202 (01) :1-4
[7]   Genetic Influences on Disease Subtypes [J].
Dahl, Andy ;
Zaitlen, Noah .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 21, 2020, 2020, 21 :413-435
[8]  
Gal Y., 2016, PR MACH LEARN RES
[9]   Machine learning in major depression: From classification to treatment outcome prediction [J].
Gao, Shuang ;
Calhoun, Vince D. ;
Sui, Jing .
CNS NEUROSCIENCE & THERAPEUTICS, 2018, 24 (11) :1037-1052
[10]   The International HapMap Project [J].
Gibbs, RA ;
Belmont, JW ;
Hardenbol, P ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Ch'ang, LY ;
Huang, W ;
Liu, B ;
Shen, Y ;
Tam, PKH ;
Tsui, LC ;
Waye, MMY ;
Wong, JTF ;
Zeng, CQ ;
Zhang, QR ;
Chee, MS ;
Galver, LM ;
Kruglyak, S ;
Murray, SS ;
Oliphant, AR ;
Montpetit, A ;
Hudson, TJ ;
Chagnon, F ;
Ferretti, V ;
Leboeuf, M ;
Phillips, MS ;
Verner, A ;
Kwok, PY ;
Duan, SH ;
Lind, DL ;
Miller, RD ;
Rice, JP ;
Saccone, NL ;
Taillon-Miller, P ;
Xiao, M ;
Nakamura, Y ;
Sekine, A ;
Sorimachi, K ;
Tanaka, T ;
Tanaka, Y ;
Tsunoda, T ;
Yoshino, E ;
Bentley, DR ;
Deloukas, P ;
Hunt, S ;
Powell, D ;
Altshuler, D ;
Gabriel, SB ;
Qiu, RZ .
NATURE, 2003, 426 (6968) :789-796