Conformal geodesics on vacuum space-times

被引:39
作者
Friedrich, H [1 ]
机构
[1] Max Planck Inst Gravitationsphys, D-14476 Golm, Germany
关键词
D O I
10.1007/s00220-003-0794-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss properties of conformal geodesics on general, vacuum, and warped product space-times and derive a system of conformal deviation equations. It is then shown how to construct on the Schwarzschild-Kruskal space-time globally defined systems of conformal Gauss coordinates which extend smoothly and without degeneracy to future and past null infinity.
引用
收藏
页码:513 / 543
页数:31
相关论文
共 11 条
[1]   Existence of non-trivial, vacuum, asymptotically simple spacetimes [J].
Chrusciel, PT ;
Delay, E .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (09) :L71-L79
[2]   Scalar curvature deformation and a gluing construction for the Einstein constraint equations [J].
Corvino, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :137-189
[3]   Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations: III. On the determination of radiation [J].
Frauendiener, J .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (02) :373-387
[4]   Bondi-type systems near spacelike infinity and the calculation of the Newman-Penrose constants [J].
Friedrich, H ;
Kánnár, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) :2195-2232
[6]   Gravitational fields near space-like and null infinity [J].
Friedrich, H .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 24 (02) :83-163
[7]   CONFORMAL GEODESICS IN GENERAL-RELATIVITY [J].
FRIEDRICH, H ;
SCHMIDT, BG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 414 (1846) :171-195
[8]   EINSTEIN EQUATIONS AND CONFORMAL STRUCTURE - EXISTENCE OF ANTI DE SITTER TYPE SPACE-TIMES [J].
FRIEDRICH, H .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (02) :125-184
[9]   From now to timelike infinity on a finite grid [J].
Hübner, P .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (10) :1871-1884
[10]  
LAWDEN DF, 1989, ELLIPTIC FUNCTIONS A