Investigation of the short-circuit current increase for PV modules using halved silicon wafer solar cells

被引:30
作者
Guo, Siyu [1 ,2 ]
Schneider, Jens [3 ]
Lu, Fei [1 ]
Hanifi, Hamed [3 ]
Turek, Marko [3 ]
Dyrba, Marcel [3 ]
Peters, Ian Marius [1 ]
机构
[1] NUS, Solar Energy Res Inst Singapore, Singapore 117574, Singapore
[2] NUS, Elect & Comp Engn ECE, Singapore 117574, Singapore
[3] Fraunhofer Res Ctr Silicon Photovolta, D-06120 Halle, Germany
基金
新加坡国家研究基金会;
关键词
Crystalline silicon; Silicon wafer solar cells; Halved cells; PV module; Short circuit current;
D O I
10.1016/j.solmat.2014.11.012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It is well established that using halved silicon wafer solar cells in a photovoltaic (PV) module is an efficient way to reduce cell-to-module resistive losses. In this work we have shown that PV modules using halved cells additionally show an improvement in their optical performance, resulting in a higher current generation. We attribute this increase in current to gains in light reflected from the backsheet area. An optical model is presented that quantitatively determines the influence of the backsheet on the short-circuit current of a PV module. We find that, for an accurate prediction, several factors have to be taken into account, including the geometry of the module, the backscattering properties of the backsheet and the illumination spectrum. Particularly the angularly and spectrally resolved scattering properties of the backsheet are shown to have a large impact on the current generation. Furthermore, light beam induced current (LBIC) measurements are used to test the backscattering properties of the backsheet and also the influence of the illumination spectrum. LBIC measurements are also used to verify the simulation results, giving good agreement. Thus the design of a PV module can be optimized by simulation. A standard full-size cell module and a halved-cell module with optimized cell spacing are fabricated. Compared to the standard module, the half-cell module is shown to have 4.60% more power (315.3 vs. 329.8 W), 1.46% higher fill factor (75.5 vs. 76.6%), and 3.08% more current (9.08 vs. 9.36 A). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 247
页数:8
相关论文
共 19 条
  • [1] [Anonymous], 609048 IEC
  • [2] [Anonymous], 2013, INT TECHNOLOGY ROADM
  • [3] [Anonymous], MATLAB STAT TOOLB RE
  • [4] CELLO:: an advanced LBIC measurement technique for solar cell local characterization
    Carstensen, J
    Popkirov, G
    Bahr, J
    Föll, H
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 76 (04) : 599 - 611
  • [5] REACHING GRID PARITY USING BP SOLAR CRYSTALLINE SILICON TECHNOLOGY
    Cunningham, Daniel W.
    Wohlgemuth, John H.
    Clark, Roger F.
    Posbic, Jean P.
    Zahler, James M.
    Gleaton, Mark
    Carlson, David E.
    Xia, Zhiyong
    Miller, Jay
    Maisano, Lisa
    [J]. 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 1197 - 1202
  • [6] Grunow P, 2006, WORL CON PHOTOVOLT E, P2152
  • [7] A Quantitative Analysis of Photovoltaic Modules Using Halved Cells
    Guo, S.
    Singh, J. P.
    Peters, I. M.
    Aberle, A. G.
    Walsh, T. M.
    [J]. INTERNATIONAL JOURNAL OF PHOTOENERGY, 2013, 2013
  • [8] Optimized Module Design: A Study of Encapsulation Losses and the Influence of Design Parameters on Module Performance
    Koentopp, Max B.
    Schuetze, Matthias
    Buss, Dominik
    Seguin, Robert
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (01): : 138 - 142
  • [9] Koentopp MB, 2012, 2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), P3178, DOI 10.1109/PVSC.2012.6318253
  • [10] Krauter S, 2006, WORL CON PHOTOVOLT E, P2133