Composition operators and embedding theorems for some function spaces of Dirichlet series

被引:8
作者
Bayart, Frederic [1 ]
Brevig, Ole Fredrik [2 ]
机构
[1] Univ Blaise Pascal, Clermont Univ, Lab Math, UMR 6620,CNRS, Campus Cezeaux 3,Pl Vasarely,TSA 60026,CS 60026, F-63178 Aubiere, France
[2] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, N-7491 Trondheim, Norway
关键词
APPROXIMATION NUMBERS; BERGMAN SPACES; H-2; SPACE;
D O I
10.1007/s00209-018-2215-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We observe that local embedding problems for certain Hardy and Bergman spaces of Dirichlet series are equivalent to boundedness of a class of composition operators. Following this, we perform a careful study of such composition operators generated by polynomial symbols. on a scale of Bergman-type Hilbert spaces D-alpha. We investigate the optimal beta such that the composition operator C-phi maps D-alpha boundedly into D-beta. We also prove a new embedding theorem for the non-Hilbertian Hardy space H-p into a Bergman space in the half-plane and use it to consider composition operators generated by polynomial symbols on H-p, finding the first non-trivial results of this type. The embedding also yields a new result for the functional associated to the multiplicative Hilbert matrix.
引用
收藏
页码:989 / 1014
页数:26
相关论文
共 25 条
  • [1] [Anonymous], 2015, Grad. Studies Math.
  • [2] [Anonymous], 2007, OPERATOR THEORY FUNC
  • [3] COMPOSITION OPERATORS ON BOHR-BERGMAN SPACES OF DIRICHLET SERIES
    Bailleul, Maxime
    Brevig, Ole Fredrik
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 129 - 142
  • [4] PROOF OF A CONJECTURE OF GROSSWALD
    BATEMAN, PT
    [J]. DUKE MATHEMATICAL JOURNAL, 1958, 25 (01) : 67 - 72
  • [5] Hardy spaces of Dirichlet series and their composition operators
    Bayart, F
    [J]. MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03): : 203 - 236
  • [6] COMPACT COMPOSITION OPERATORS WITH NONLINEAR SYMBOLS ON THE H2 SPACE OF DIRICHLET SERIES
    Bayart, Frederic
    Brevig, Ole Fredrik
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (01) : 81 - 120
  • [7] APPROXIMATION NUMBERS OF COMPOSITION OPERATORS ON Hp SPACES OF DIRICHLET SERIES
    Bayart, Frederic
    Queffelec, Herye
    Seip, Kristian
    [J]. ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) : 551 - 588
  • [8] Composition operators on the polydisk induced by affine maps
    Bayart, Frederic
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) : 1969 - 2003
  • [9] An inequality of Hardy-Littlewood type for Dirichlet polynomials
    Bondarenko, Andriy
    Heap, Winston
    Seip, Kristian
    [J]. JOURNAL OF NUMBER THEORY, 2015, 150 : 191 - 205
  • [10] The multiplicative Hilbert matrix
    Brevig, Ole Fredrik
    Perfekt, Karl-Mikael
    Seip, Kristian
    Siskakis, Aristomenis G.
    Vukotic, Dragan
    [J]. ADVANCES IN MATHEMATICS, 2016, 302 : 410 - 432