Composition operators and embedding theorems for some function spaces of Dirichlet series

被引:8
作者
Bayart, Frederic [1 ]
Brevig, Ole Fredrik [2 ]
机构
[1] Univ Blaise Pascal, Clermont Univ, Lab Math, UMR 6620,CNRS, Campus Cezeaux 3,Pl Vasarely,TSA 60026,CS 60026, F-63178 Aubiere, France
[2] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, N-7491 Trondheim, Norway
关键词
APPROXIMATION NUMBERS; BERGMAN SPACES; H-2; SPACE;
D O I
10.1007/s00209-018-2215-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We observe that local embedding problems for certain Hardy and Bergman spaces of Dirichlet series are equivalent to boundedness of a class of composition operators. Following this, we perform a careful study of such composition operators generated by polynomial symbols. on a scale of Bergman-type Hilbert spaces D-alpha. We investigate the optimal beta such that the composition operator C-phi maps D-alpha boundedly into D-beta. We also prove a new embedding theorem for the non-Hilbertian Hardy space H-p into a Bergman space in the half-plane and use it to consider composition operators generated by polynomial symbols on H-p, finding the first non-trivial results of this type. The embedding also yields a new result for the functional associated to the multiplicative Hilbert matrix.
引用
收藏
页码:989 / 1014
页数:26
相关论文
共 25 条
[1]  
[Anonymous], 2015, Grad. Studies Math.
[2]  
[Anonymous], 2007, OPERATOR THEORY FUNC
[3]   COMPOSITION OPERATORS ON BOHR-BERGMAN SPACES OF DIRICHLET SERIES [J].
Bailleul, Maxime ;
Brevig, Ole Fredrik .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) :129-142
[4]   PROOF OF A CONJECTURE OF GROSSWALD [J].
BATEMAN, PT .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (01) :67-72
[5]   Hardy spaces of Dirichlet series and their composition operators [J].
Bayart, F .
MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03) :203-236
[6]   COMPACT COMPOSITION OPERATORS WITH NONLINEAR SYMBOLS ON THE H2 SPACE OF DIRICHLET SERIES [J].
Bayart, Frederic ;
Brevig, Ole Fredrik .
PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (01) :81-120
[7]   APPROXIMATION NUMBERS OF COMPOSITION OPERATORS ON Hp SPACES OF DIRICHLET SERIES [J].
Bayart, Frederic ;
Queffelec, Herye ;
Seip, Kristian .
ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) :551-588
[8]   Composition operators on the polydisk induced by affine maps [J].
Bayart, Frederic .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) :1969-2003
[9]   An inequality of Hardy-Littlewood type for Dirichlet polynomials [J].
Bondarenko, Andriy ;
Heap, Winston ;
Seip, Kristian .
JOURNAL OF NUMBER THEORY, 2015, 150 :191-205
[10]   The multiplicative Hilbert matrix [J].
Brevig, Ole Fredrik ;
Perfekt, Karl-Mikael ;
Seip, Kristian ;
Siskakis, Aristomenis G. ;
Vukotic, Dragan .
ADVANCES IN MATHEMATICS, 2016, 302 :410-432