In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller

被引:45
作者
Agrawal, Deepak K. [1 ,2 ]
Marshall, Ryan [3 ]
Noireaux, Vincent [3 ]
Sontag, Eduardo D. [1 ,2 ,4 ]
机构
[1] Northeastern Univ, Dept Bioengn, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[4] Harvard Med Sch, Program Therapeut Sci, Lab Syst Pharmacol, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
PERFECT ADAPTATION; COPY-NUMBER; EXPRESSION; CONSTRUCTION; MODELS;
D O I
10.1038/s41467-019-13626-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Feedback mechanisms play a critical role in the maintenance of cell homeostasis in the presence of disturbances and uncertainties. Motivated by the need to tune the dynamics and improve the robustness of gene circuits, biological engineers have proposed various designs that mimic natural molecular feedback control mechanisms. However, practical and predictable implementations have proved challenging because of the complexity of synthesis and analysis of complex biomolecular networks. Here, we analyze and experimentally validate a synthetic biomolecular controller executed in vitro. The controller ensures that gene expression rate tracks an externally imposed reference level, and achieves this goal even in the presence of certain kinds of disturbances. Our design relies upon an analog of the well-known principle of integral feedback in control theory. We implement the controller in an Escherichia coil cell-free transcription-translation system, which allows rapid prototyping and implementation. Modeling and theory guide experimental implementation with well-defined operational predictability.
引用
收藏
页数:12
相关论文
共 42 条
  • [1] Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression
    Agrawal, Deepak K.
    Tang, Xun
    Westbrook, Alexandra
    Marshall, Ryan
    Maxwell, Colin S.
    Lucks, Julius
    Noireaux, Vincent
    Beisel, Chase L.
    Dunlop, Mary J.
    Franco, Elisa
    [J]. ACS SYNTHETIC BIOLOGY, 2018, 7 (05): : 1219 - 1228
  • [2] Robustness in bacterial chemotaxis
    Alon, U
    Surette, MG
    Barkai, N
    Leibler, S
    [J]. NATURE, 1999, 397 (6715) : 168 - 171
  • [3] Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems
    Angeli, D
    Ferrell, JE
    Sontag, ED
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) : 1822 - 1827
  • [4] [Anonymous], 2010, Feedback Systems: An Introduction for Scientists and Engineers
  • [5] [Anonymous], 2013, MATH CONTROL THEORY
  • [6] A universal biomolecular integral feedback controller for robust perfect adaptation
    Aoki, Stephanie K.
    Lillacci, Gabriele
    Gupta, Ankit
    Baumschlager, Armin
    Schweingruber, David
    Khammash, Mustafa
    [J]. NATURE, 2019, 570 (7762) : 533 - +
  • [7] Robustness in simple biochemical networks
    Barkai, N
    Leibler, S
    [J]. NATURE, 1997, 387 (6636) : 913 - 917
  • [8] Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template
    Bleris, Leonidas
    Xie, Zhen
    Glass, David
    Adadey, Asa
    Sontag, Eduardo
    Benenson, Yaakov
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2011, 7
  • [9] Design of a Synthetic Integral Feedback Circuit: Dynamic Analysis and DNA Implementation
    Briat, Corentin
    Zechner, Christoph
    Khammash, Mustafa
    [J]. ACS SYNTHETIC BIOLOGY, 2016, 5 (10): : 1108 - 1116
  • [10] Briat C, 2016, CELL SYST, V2, P15, DOI [10.1016/j.cels.2016.01.004, 10.1016/j.cels.2016.02.010]