The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function

被引:149
作者
Peyton, Shelly R.
Ghajar, Cyrus M.
Khatiwala, Chirag B.
Putnam, Andrew J.
机构
[1] Univ Calif Irvine, Dept Biomed Engn, Henry Samueli Sch Engn, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Henry Samueli Sch Engn, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
关键词
extracellular matrix; mechanotransduction; cytoskeleton; RhoA;
D O I
10.1007/s12013-007-0004-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular "mechanotransduction" mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.
引用
收藏
页码:300 / 320
页数:21
相关论文
共 208 条
[1]  
ADAMS JC, 1993, DEVELOPMENT, V117, P1183
[2]  
AIKAWA M, 1995, ANN NY ACAD SCI, V748, P578
[3]  
Aikawa M, 1997, CIRCULATION, V96, P82
[4]   Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes [J].
Aikawa, R ;
Komuro, I ;
Yamazaki, T ;
Zou, YZ ;
Kudoh, S ;
Zhu, WD ;
Kadowaki, T ;
Yazaki, Y .
CIRCULATION RESEARCH, 1999, 84 (04) :458-466
[5]  
Alenghat Francis J, 2002, Sci STKE, V2002, ppe6, DOI 10.1126/stke.2002.119.pe6
[6]   Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures [J].
Almany, L ;
Seliktar, D .
BIOMATERIALS, 2005, 26 (15) :2467-2477
[7]   Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase [J].
Amano, M ;
Chihara, K ;
Kimura, K ;
Fukata, Y ;
Nakamura, N ;
Matsuura, Y ;
Kaibuchi, K .
SCIENCE, 1997, 275 (5304) :1308-1311
[8]   Angiotensin II activates RhoA in cardiac myocytes - A critical role of RhoA in angiotensin II-induced premyofibril formation [J].
Aoki, H ;
Izumo, S ;
Sadoshima, J .
CIRCULATION RESEARCH, 1998, 82 (06) :666-676
[9]   RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity [J].
Arthur, WT ;
Burridge, K .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (09) :2711-2720
[10]   Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism [J].
Arthur, WT ;
Petch, LA ;
Burridge, K .
CURRENT BIOLOGY, 2000, 10 (12) :719-722