Calculation of eigenpair derivatives for symmetric quadratic eigenvalue problem with repeated eigenvalues

被引:5
作者
Wang, Pingxin [1 ,2 ]
Dai, Hua [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Math & Phys, Nanjing 212003, Zhengjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Sensitivity analysis; Quadratic eigenvalue problem; Eigenvalue derivatives; Eigenvector derivatives; MODE SHAPE SENSITIVITIES; MULTIPLE NATURAL FREQUENCIES; DISCRETE STRUCTURAL SYSTEMS; EFFICIENT ALGEBRAIC-METHOD; CORRESPONDING EIGENVECTORS; DAMPED SYSTEMS; COMPLEX EIGENVECTORS; GENERAL MATRIX; COMPUTATION; DISTINCT;
D O I
10.1007/s40314-014-0169-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider computing the derivatives of the semisimple eigenvalues and corresponding eigenvectors of symmetric quadratic eigenvalue problem. In the proposed method, the eigenvector derivatives of the symmetric quadratic eigenvalue problem are divided into a particular solution and a homogeneous solution; a simplified method is given to calculate the particular solution by solving a linear system with nonsingular coefficient matrix, the method is numerically stable and efficient. Two numerical examples are included to illustrate the validity of the proposed method.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 38 条
[1]   SENSITIVITY ANALYSIS OF DISCRETE STRUCTURAL SYSTEMS [J].
ADELMAN, HM ;
HAFTKA, RT .
AIAA JOURNAL, 1986, 24 (05) :823-832
[2]   Rates of change of eigenvalues and eigenvectors in damped dynamic system [J].
Adhikari, S .
AIAA JOURNAL, 1999, 37 (11) :1452-1458
[3]  
Adhikari S, 2014, STRUCTURAL DYNAMIC ANALYSIS WITH GENERALIZED DAMPING MODELS: IDENTIFICATION, P1, DOI 10.1002/9781118862971
[4]   Eigenderivative analysis of asymmetric non-conservative systems [J].
Adhikari, S ;
Friswell, MI .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 51 (06) :709-733
[5]   DERIVATIVES OF EIGENVALUES AND EIGENVECTORS OF MATRIX FUNCTIONS [J].
ANDREW, AL ;
CHU, KWE ;
LANCASTER, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :903-926
[6]   Computation of derivatives of repeated eigenvalues and the corresponding eigenvectors of symmetric matrix pencils [J].
Andrew, AL ;
Tan, RCE .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (01) :78-100
[7]  
Andrew AL, 2000, NUMER LINEAR ALGEBR, V7, P151, DOI 10.1002/1099-1506(200005)7:4<151::AID-NLA191>3.3.CO
[8]  
2-D
[9]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[10]   2ND-ORDER DESIGN SENSITIVITIES TO ASSESS THE APPLICABILITY OF SENSITIVITY ANALYSIS [J].
BRANDON, JA .
AIAA JOURNAL, 1991, 29 (01) :135-139