A New Approach For Weighted Hardy's Operator In VELS

被引:8
作者
Akin, Lutfi [1 ]
Dusunceli, Faruk [1 ]
机构
[1] Mardin Artuklu Univ, Fac Econ & Adm Sci, Mardin, Turkey
关键词
Hardy inequality; Variable exponent; Boundedness;
D O I
10.2478/AMNS.2019.2.00040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A considerable number of research has been carried out on the generalized Lebesgue spaces L-p(x) and boundedness of different integral operators therein. In this study, a new approach for weighted increasing near the origin and decreasing near infinity exponent function that provides a boundedness of the Hardy's operator in variable exponent space is given.
引用
收藏
页码:417 / 431
页数:15
相关论文
共 31 条
  • [1] Regularity results for a class of functionals with non-standard growth
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) : 121 - 140
  • [2] [Anonymous], 2007, Fract. Calc. Appl. Anal.
  • [3] [Anonymous], 2003, FRACT CALC APPL ANAL
  • [4] [Anonymous], 2003, Fract. Calc. Appl. Anal.
  • [5] [Anonymous], 2005, Georgian Math J
  • [6] [Anonymous], 2005, GEORGIAN MATH J
  • [7] Weighted Hardy modular inequalities in variable Lp spaces for decreasing functions
    Boza, Santiago
    Soria, Javier
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) : 383 - 388
  • [8] Chen L., 2007, HARDY TYPE INEQUALIT, P11
  • [9] On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
    Cruz-Uribe, David
    Mamedov, Farman I.
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (02): : 335 - 367
  • [10] CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3