The Free Energy Requirements of Biological Organisms; Implications for Evolution

被引:15
作者
Wolpert, David H. [1 ,2 ,3 ]
机构
[1] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Arizona State Univ, Tempe, AZ 85281 USA
来源
ENTROPY | 2016年 / 18卷 / 04期
基金
美国国家科学基金会;
关键词
thermodynamics of computation; Landauer bound; information processing rate of the biosphere; HEAT-GENERATION; 2ND LAW; INFORMATION; PRINCIPLE; THERMODYNAMICS; COMPUTATION;
D O I
10.3390/e18040138
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent advances in nonequilibrium statistical physics have provided unprecedented insight into the thermodynamics of dynamic processes. The author recently used these advances to extend Landauer's semi-formal reasoning concerning the thermodynamics of bit erasure, to derive the minimal free energy required to implement an arbitrary computation. Here, I extend this analysis, deriving the minimal free energy required by an organism to run a given (stochastic) map pi from its sensor inputs to its actuator outputs. I use this result to calculate the input-output map pi of an organism that optimally trades off the free energy needed to run pi with the phenotypic fitness that results from implementing pi. I end with a general discussion of the limits imposed on the rate of the terrestrial biosphere's information processing by the flux of sunlight on the Earth.
引用
收藏
页数:29
相关论文
共 50 条
[1]   Thermodynamic theory of biological evolution and aging of living organisms [J].
Gladyshev G.P. .
Advances in Gerontology, 2011, 1 (2) :130-133
[2]   A Free Energy Principle for Biological Systems [J].
Karl, Friston .
ENTROPY, 2012, 14 (11) :2100-2121
[3]   The free energy and information embodied in the amino acid chains of organisms [J].
Jorgensen, Sven Erik ;
Ludovisi, Alessandro ;
Nielsen, Soren Nors .
ECOLOGICAL MODELLING, 2010, 221 (19) :2388-2392
[4]   Examining energy efficiency requirements in building energy standards: Implications of sustainable energy consumption [J].
Tippu, Junaid ;
Saravanasankar, Subramaniam ;
Sankaranarayanan, Bathrinath ;
Ali, Syed Mithun ;
Venkatesh, V. G. ;
Qarnain, Syed Shuibul ;
Sattanathan, Muthuvel .
ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2022, 17 (01)
[5]   Organisms on the move: ecology and evolution of dispersal [J].
Gibbs, Melanie ;
Saastamoinen, Marjo ;
Coulon, Aurelie ;
Stevens, Virginie M. .
BIOLOGY LETTERS, 2010, 6 (02) :146-148
[6]   Is the tendency to maximise energy distribution an optimal collective activity for biological purposes? A proposal for a global principle of biological organization [J].
Velazquez, Jose Luis Perez ;
Mateos, Diego M. ;
Guevara, Ramon .
HELIYON, 2023, 9 (04)
[7]   Metabolic Free Energy and Biological Codes: A 'Data Rate Theorem' Aging Model [J].
Wallace, Rodrick .
BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (06) :879-903
[8]   Psychophysical identity and free energy [J].
Kiefer, Alex B. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (169)
[9]   Transformation of matter in living organisms during growth and evolution [J].
Hansen, Lee D. ;
Tolley, H. Dennis ;
Woodfield, Brian F. .
BIOPHYSICAL CHEMISTRY, 2021, 271
[10]   Free energy and inference in living systems [J].
Kim, Chang Sub .
INTERFACE FOCUS, 2023, 13 (03)