IGESS: a statistical approach to integrating individual-level genotype data and summary statistics in genome-wide association studies

被引:11
作者
Dai, Mingwei [1 ,2 ]
Ming, Jingsi [2 ]
Cai, Mingxuan [2 ]
Liu, Jin [3 ]
Yang, Can [2 ]
Wan, Xiang [4 ]
Xu, Zongben [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Duke NUS Med Sch, Ctr Quantitat Med, Singapore, Singapore
[4] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
关键词
BAYESIAN VARIABLE SELECTION; HERITABILITY; REGRESSION; METAANALYSIS; TRAITS; MODELS; SET;
D O I
10.1093/bioinformatics/btx314
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Results from genome-wide association studies (GWAS) suggest that a complex phenotype is often affected by many variants with small effects, known as 'polygenicity'. Tens of thousands of samples are often required to ensure statistical power of identifying these variants with small effects. However, it is often the case that a research group can only get approval for the access to individual-level genotype data with a limited sample size (e.g. a few hundreds or thousands). Meanwhile, summary statistics generated using single-variant-based analysis are becoming publicly available. The sample sizes associated with the summary statistics datasets are usually quite large. How to make the most efficient use of existing abundant data resources largely remains an open question. Results: In this study, we propose a statistical approach, IGESS, to increasing statistical power of identifying risk variants and improving accuracy of risk prediction by integrating individual level genotype data and summary statistics. An efficient algorithm based on variational inference is developed to handle the genome-wide analysis. Through comprehensive simulation studies, we demonstrated the advantages of IGESS over the methods which take either individual-level data or summary statistics data as input. We applied IGESS to perform integrative analysis of Crohns Disease from WTCCC and summary statistics from other studies. IGESS was able to significantly increase the statistical power of identifying risk variants and improve the risk prediction accuracy from 63.2% (+/- 4%) to 69.4% (+/- 1%) using about 240 000 variants. Availability and implementation: The IGESS software is available at https://github.com/daviddaigithub/IGESS. Contact: zbxu@xjtu.edu.cn or xwan@comp.hkbu.edu.hk or eeyang@hkbu.edu.hk Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:2882 / 2889
页数:8
相关论文
共 35 条
[1]   Hundreds of variants clustered in genomic loci and biological pathways affect human height [J].
Allen, Hana Lango ;
Estrada, Karol ;
Lettre, Guillaume ;
Berndt, Sonja I. ;
Weedon, Michael N. ;
Rivadeneira, Fernando ;
Willer, Cristen J. ;
Jackson, Anne U. ;
Vedantam, Sailaja ;
Raychaudhuri, Soumya ;
Ferreira, Teresa ;
Wood, Andrew R. ;
Weyant, Robert J. ;
Segre, Ayellet V. ;
Speliotes, Elizabeth K. ;
Wheeler, Eleanor ;
Soranzo, Nicole ;
Park, Ju-Hyun ;
Yang, Jian ;
Gudbjartsson, Daniel ;
Heard-Costa, Nancy L. ;
Randall, Joshua C. ;
Qi, Lu ;
Smith, Albert Vernon ;
Maegi, Reedik ;
Pastinen, Tomi ;
Liang, Liming ;
Heid, Iris M. ;
Luan, Jian'an ;
Thorleifsson, Gudmar ;
Winkler, Thomas W. ;
Goddard, Michael E. ;
Lo, Ken Sin ;
Palmer, Cameron ;
Workalemahu, Tsegaselassie ;
Aulchenko, Yurii S. ;
Johansson, Asa ;
Zillikens, M. Carola ;
Feitosa, Mary F. ;
Esko, Tonu ;
Johnson, Toby ;
Ketkar, Shamika ;
Kraft, Peter ;
Mangino, Massimo ;
Prokopenko, Inga ;
Absher, Devin ;
Albrecht, Eva ;
Ernst, Florian ;
Glazer, Nicole L. ;
Hayward, Caroline .
NATURE, 2010, 467 (7317) :832-838
[2]  
Bishop C., 2006, Pattern recognition and machine learning, P423
[3]   LD Score regression distinguishes confounding from polygenicity in genome-wide association studies [J].
Bulik-Sullivan, Brendan K. ;
Loh, Po-Ru ;
Finucane, Hilary K. ;
Ripke, Stephan ;
Yang, Jian ;
Patterson, Nick ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (03) :291-+
[4]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[5]   Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application [J].
Cantor, Rita M. ;
Lange, Kenneth ;
Sinsheimer, Janet S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (01) :6-22
[6]   Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies [J].
Carbonetto, Peter ;
Stephens, Matthew .
BAYESIAN ANALYSIS, 2012, 7 (01) :73-107
[7]   Developing and evaluating polygenic risk prediction models for stratified disease prevention [J].
Chatterjee, Nilanjan ;
Shi, Jianxin ;
Garcia-Closas, Montserrat .
NATURE REVIEWS GENETICS, 2016, 17 (07) :392-406
[8]   GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation [J].
Chung, Dongjun ;
Yang, Can ;
Li, Cong ;
Gelernter, Joel ;
Zhao, Hongyu .
PLOS GENETICS, 2014, 10 (11)
[9]  
Efron B., 2010, Large-scale inference: empirical Bayes methods for estimation, testing, and prediction, V1
[10]   Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci [J].
Franke, Andre ;
McGovern, Dermot P. B. ;
Barrett, Jeffrey C. ;
Wang, Kai ;
Radford-Smith, Graham L. ;
Ahmad, Tariq ;
Lees, Charlie W. ;
Balschun, Tobias ;
Lee, James ;
Roberts, Rebecca ;
Anderson, Carl A. ;
Bis, Joshua C. ;
Bumpstead, Suzanne ;
Ellinghaus, David ;
Festen, Eleonora M. ;
Georges, Michel ;
Green, Todd ;
Haritunians, Talin ;
Jostins, Luke ;
Latiano, Anna ;
Mathew, Christopher G. ;
Montgomery, Grant W. ;
Prescott, Natalie J. ;
Raychaudhuri, Soumya ;
Rotter, Jerome I. ;
Schumm, Philip ;
Sharma, Yashoda ;
Simms, Lisa A. ;
Taylor, Kent D. ;
Whiteman, David ;
Wijmenga, Cisca ;
Baldassano, Robert N. ;
Barclay, Murray ;
Bayless, Theodore M. ;
Brand, Stephan ;
Buening, Carsten ;
Cohen, Albert ;
Colombel, Jean-Frederick ;
Cottone, Mario ;
Stronati, Laura ;
Denson, Ted ;
De Vos, Martine ;
D'Inca, Renata ;
Dubinsky, Marla ;
Edwards, Cathryn ;
Florin, Tim ;
Franchimont, Denis ;
Gearry, Richard ;
Glas, Juergen ;
Van Gossum, Andre .
NATURE GENETICS, 2010, 42 (12) :1118-+