SRNSSI: A Deep Light-Weight Network for Single Image Super Resolution Using Spatial and Spectral Information

被引:17
作者
Esmaeilzehi, Alireza [1 ]
Ahmad, M. Omair [1 ]
Swamy, M. N. S. [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Image Super Resolution; Convolutional Neural Networks; Residual Learning; Deep Learning; SUPERRESOLUTION;
D O I
10.1109/TCI.2021.3070522
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Design of a residual block that provides a rich set of features while requiring only small numbers of parameters and operations is crucial for the task of single image super resolution. This is especially important in applications with limited power and storage capacity. In this paper, a new multi-domain residual block is proposed in order to generate richer set of features for the task of image super resolution. The proposed residual block consists of two feature generation modules. The first one is a spatial information processing module and the second one is a spectral information processing module. The feature maps obtained by these two feature generation modules are concatenatively fused to obtain block's output. The new residual block is used to build light-weight super resolution networks. Extensive experiments are performed using several benchmark datasets in order to evaluate the performance of the networks using the new multi-domain residual block. It is shown that the use of both the spatial and spectral features enhances the performance of the light-weight super resolution networks.
引用
收藏
页码:409 / 421
页数:13
相关论文
共 50 条
[1]  
Abadi Martin, 2015, TENSORFLOW LARGE SCA
[2]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[3]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[4]   Beyond Deep Residual Learning for Image Restoration: Persistent Homology-Guided Manifold Simplification [J].
Bae, Woong ;
Yoo, Jaejun ;
Ye, Jong Chul .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1141-1149
[5]  
Bashir M, 2019, IEEE INT CONF BIG DA, P3535, DOI 10.1109/BigData47090.2019.9006426
[6]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[7]  
Bovik A., ESSENTIAL GUIDE IMAG, P137
[8]   Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution [J].
Chen, Yunpeng ;
Fan, Haoqi ;
Xu, Bing ;
Yan, Zhicheng ;
Kalantidis, Yannis ;
Rohrbach, Marcus ;
Yan, Shuicheng ;
Feng, Jiashi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3434-3443
[9]  
Cheng Ma, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P7766, DOI 10.1109/CVPR42600.2020.00779
[10]  
Chollet F., 2015, KERAS 20 COMPUTER SO