Non-Negative Integer Matrix Representations of a Z+-ring

被引:2
作者
Chen, Zhichao [1 ]
Cai, Jiayi [1 ]
Meng, Lingchao [1 ]
Li, Libin [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-negative integer; matrix representation; irreducible Z(+)-module; Z(+)-ring; FUSION CATEGORIES; GREEN RINGS; HOPF-ALGEBRAS;
D O I
10.4208/jms.v54n4.21.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Z(+)-ring is an important invariant in the theory of tensor category. In this paper, by using matrix method, we describe all irreducible Z(+)-modules over a Z(+)-ring A, where A is a commutative ring with a Z(+)-basis {1, x, y, xy} and relations: x(2)=1, y(2)=1+x+xy. We prove that when the rank of Z(+)-module n >= 5, there does not exist irreducible Z(+)-modules and when the rank n <= 4, there exists finite inequivalent irreducible Z(+)-modules, the number of which is respectively 1, 3, 3, 2 when the rank runs from 1 to 4.
引用
收藏
页码:357 / 370
页数:14
相关论文
共 21 条
  • [1] Boundary conditions in rational conformal field theories
    Behrend, RE
    Pearce, PA
    Petkova, VB
    Zuber, JB
    [J]. NUCLEAR PHYSICS B, 2000, 570 (03) : 525 - 589
  • [2] Commutative algebras in Fibonacci categories
    Booker, Thomas
    Davydov, Alexei
    [J]. JOURNAL OF ALGEBRA, 2012, 355 (01) : 176 - 204
  • [3] On the Grothendieck rings of generalized Drinfeld doubles
    Burciu, Sebastian
    [J]. JOURNAL OF ALGEBRA, 2017, 486 : 14 - 35
  • [4] Cyclotomic Integers, Fusion Categories, and Subfactors
    Calegari, Frank
    Morrison, Scott
    Snyder, Noah
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (03) : 845 - 896
  • [5] Chen HX, 2014, P AM MATH SOC, V142, P765
  • [6] Davydov A., 1997, DIFFIETY I RUSS ACAD, P15, DOI DOI 10.48550/ARXIV.Q-ALG/9711025
  • [7] Davydov AA, 2000, ALGEBRA, P99
  • [8] Etingof P., 1995, Internat. Math. Res. Notices, P235, DOI [10.1155/S1073792895000183, DOI 10.1155/S1073792895000183]
  • [9] Fuchs J., 2003, FIELDS I COMMUN, P25
  • [10] Boundary conformal field theory and fusion ring representations
    Gannon, T
    [J]. NUCLEAR PHYSICS B, 2002, 627 (03) : 506 - 564