Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays

被引:4
|
作者
Dong, Qiao-Li [1 ,2 ]
Li, Xiao-Huan [3 ]
Cho, Yeol Je [4 ,5 ]
Rassias, Themistocles M. [6 ]
机构
[1] Civil Aviat Univ China, Tianjin Key Lab Adv Signal Proc, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[3] Shandong Univ Technol, Sch Math & Stat, Zibo 255000, Shandong, Peoples R China
[4] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
[5] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[6] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Fixed point problem; Krasnosel'skii-Mann iteration; multi-step inertial Krasnosel'skii-Mann iteration; nonexpansive mapping; CONVERGENCE THEOREMS; ALGORITHM; SCHEME;
D O I
10.1007/s11784-021-00879-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the authors (Dong et al. in J Global Optim 73(4):801-824, 2019) introduced the multi-step inertial Krasnosel'skii-Mann iteration, where the inertial parameters involve the iterative sequence. Therefore, one has to compute the inertial parameters per iteration. The aim of this article is to present two kinds of inertial parameter arrays which do not depend on the iterative sequence. We first introduce a general Krasnosel'skii-Mann iteration on the affine hull of orbits, based on which one inertial parameter array is presented. Second, we investigate the other inertial parameter array by introducing a modified Krasnosel'skii-Mann iteration. The convergence of the modified Krasnosel'skii-Mann iteration is shown using an exhaustive convergence analysis and the running-average iteration-complexity bound is provided. Finally, we give two numerical examples to illustrate that the multi-step inertial Krasnosel'skii-Mann iteration with inertial parameters proposed in this article behaves better than that with inertial parameters given in [10].
引用
收藏
页数:18
相关论文
共 45 条
  • [1] Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays (vol 23, 44, 2021)
    Dong, Qiao-Li
    Li, Xiao-Huan
    Cho, Yeol Je
    Rassias, Themistocles M.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (04)
  • [2] Multi-step inertial Krasnosel’skiǐ–Mann iteration with new inertial parameters arrays
    Qiao-Li Dong
    Xiao-Huan Li
    Yeol Je Cho
    Themistocles M. Rassias
    Journal of Fixed Point Theory and Applications, 2021, 23
  • [3] New inertial factors of the Krasnosel'skii-Mann iteration
    Dong, Yunda
    SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (01) : 145 - 161
  • [4] Correction to: Multi-step inertial Krasnosel’skiǐ–Mann iteration with new inertial parameters arrays
    Qiao-Li Dong
    Xiao-Huan Li
    Yeol Je Cho
    Themistocles M. Rassias
    Journal of Fixed Point Theory and Applications, 2021, 23
  • [5] MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications
    Dong, Q. L.
    Huang, J. Z.
    Li, X. H.
    Cho, Y. J.
    Rassias, Th. M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (04) : 801 - 824
  • [6] Inertial reflected Krasnosel'skii-Mann iteration with applications to monotone inclusion problems
    Izuchukwu, Chinedu
    Shehu, Yekini
    OPTIMIZATION, 2025, 74 (03) : 683 - 707
  • [7] New Acceleration Factors of the Krasnosel'skii-Mann Iteration
    Dong, Yunda
    Sun, Mengdi
    RESULTS IN MATHEMATICS, 2022, 77 (05)
  • [8] ON THE CONVERGENCE RATE OF THE KRASNOSEL'SKII-MANN ITERATION
    Matsushita, Shin-Ya
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 162 - 170
  • [9] Some results about Krasnosel' skii-Mann iteration process
    Afshari, Hojjat
    Aydi, Hassen
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4852 - 4859
  • [10] New inertial factors of the Krasnosel’skiı̆-Mann iteration
    Yunda Dong
    Set-Valued and Variational Analysis, 2021, 29 : 145 - 161