Lucas sequences whose nth term is a square or an almost square

被引:7
作者
Bremner, A. [1 ]
Tzanakis, N.
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Univ Crete, Dept Math, Ireklion, Greece
关键词
EXPLICITLY SOLVE; POWERS; FORMS;
D O I
10.4064/aa126-3-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:261 / 280
页数:20
相关论文
共 22 条
[1]  
BAKER A, 1993, J REINE ANGEW MATH, V442, P19
[2]   Lucas sequences whose 12th or 9th term is a square [J].
Bremner, A ;
Tzanakis, N .
JOURNAL OF NUMBER THEORY, 2004, 107 (02) :215-227
[3]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[4]  
Cohn JHE., 1964, J. Lond. Math. Soc, V39, P537, DOI [10.1112/jlms/s1-39.1.537, DOI 10.1112/JLMS/S1-39.1.537]
[5]  
Cremona JE, 2003, MATH COMPUT, V72, P1417, DOI 10.1090/S0025-5718-02-01480-1
[6]   ON THE EQUATIONS Z(M)=F(X,Y) AND AX(P)+BY(Q)=CZ(R) [J].
DARMON, H ;
GRANVILLE, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 :513-543
[7]   An extended theory of Lucas' functions [J].
Lehmer, DH .
ANNALS OF MATHEMATICS, 1930, 31 :419-448
[8]  
Ljunggren W., 1942, NORSKE AKAD AVH, VI, P333
[9]  
MIGNOTTE M., 1993, Journal de Theorie des nombers de Bordeaux, V5, P333
[10]  
Nagell T., 1964, Introduction to Number Theory