Renormalization group of a two-dimensional patched Fermi surface

被引:2
|
作者
Ferraz, A [1 ]
机构
[1] ETH Honggerberg, Ctr Theoret Studies, CH-8093 Zurich, Switzerland
[2] Univ Fribourg, Inst Phys Theor, CH-1700 Fribourg, Switzerland
[3] Condensada UnB, Ctr Intl Fis Mat, Brasilia, DF, Brazil
来源
MODERN PHYSICS LETTERS B | 2003年 / 17卷 / 04期
关键词
Fermions in reduced dimensions; non-Fermi-liquid ground states; electron phase diagram and phase transitions in model systems; Luttinger liquid; TEMPERATURE; BI2SR2CACU2O8+DELTA; SUPERCONDUCTORS; STATE;
D O I
10.1142/S021798490300507X
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using the renormalization group we calculate the single particle Green's function G and the momentum occupation function n(($) over bar) for a quasiparticle in a two-dimensional Fermi Surface (FS) composed of four symmetric patches with both flat and curved arcs in k-space. We show that G develops an anomalous dimension as a result of the vanishing of the quasiparticle weight at the FS. n((p) over bar) is a continuous function of (p) over bar = k(F)\(p) over right arrow-(k) over right arrow (F)\ with an infinite slope at FS for CU*2/(1 - CU*2) < 1. This result resembles a Luttinger liquid and indicates the breakdown of Fermi liquid theory in this regime.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 50 条
  • [31] A RENORMALIZATION-GROUP ANALYSIS OF LATTICE MODELS OF TWO-DIMENSIONAL MEMBRANES
    AMBJORN, J
    DURHUUS, B
    FROHLICH, J
    JONSSON, T
    JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (1-2) : 29 - 85
  • [32] Renormalization group flow of the two-dimensional O(N) spin model
    Ito, KR
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 58 (01) : 29 - 40
  • [33] Correlation effects on the Fermi surface of the two-dimensional Hubbard model
    Otsuka, Y
    Morita, Y
    Hatsugai, Y
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2002, 63 (6-8) : 1389 - 1391
  • [34] Presence versus absence of two-dimensional Fermi surface anomalies
    Buterakos, Donovan
    DinhDuy Vu
    Yu, Jiabin
    Das Sarma, Sankar
    PHYSICAL REVIEW B, 2021, 103 (20)
  • [35] Density matrix renormalization group approach to a two-dimensional bosonic model
    Sugihara, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 140 : 791 - 793
  • [36] Quantitative functional renormalization group description of the two-dimensional Hubbard model
    Hille, Cornelia
    Kugler, Fabian B.
    Eckhardt, Christian J.
    He, Yuan-Yao
    Kauch, Anna
    Honerkamp, Carsten
    Toschi, Alessandro
    Andergassen, Sabine
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [37] RENORMALIZATION-GROUP STUDY OF THE TWO-DIMENSIONAL HUBBARD-MODEL
    VANDERZANDE, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (05): : 889 - 898
  • [38] The tensor renormalization group for pure and disordered two-dimensional lattice systems
    Guven, Can
    Hinczewski, Michael
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (15) : 2915 - 2919
  • [39] Renormalization Group Flow of the Two-Dimensional O(N) Spin Model
    K. R. Ito
    Letters in Mathematical Physics, 2001, 58 : 29 - 40
  • [40] On the renormalization group fixed point of the two-dimensional Ising model at criticality
    Alexander Stottmeister
    Tobias J. Osborne
    Scientific Reports, 13