A Review on Automatic Classification of Honey Botanical Origins using Machine Learning

被引:2
作者
Al-Awadhi, Mokhtar A. [1 ]
Deshmukh, Ratnadeep R. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Comp Sci & IT, Aurangabad, Maharashtra, India
来源
2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021) | 2021年
关键词
honey authentication; honey botanical origin classification; machine learning; spectroscopy; FLORAL ORIGIN; ADULTERATION DETECTION; RAMAN-SPECTROSCOPY; DISCRIMINATION; AUTHENTICATION; CHEMOMETRICS; SENSOR; TOOL;
D O I
10.1109/MTICTI53925.2021.9664758
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Honey botanical origin classification is essential to honey authentication and honey botanical origin mislabeling prevention. Recently, several researchers have used advanced analytical techniques for classifying honey floral sources. These methods have incorporated different acquisition technologies and machine learning (ML) models. In this paper, we review state-of-the-art approaches for classifying honey botanical sources. We discuss the various technologies used for measuring honey constituents, honey physical and chemical properties, and technologies for capturing honey spatial and spectral data. Also, we discuss the ML techniques and their classification performances. We give recommendations for future work at the end of this paper.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 47 条
  • [21] Multivariate Analysis of Attenuated Total Reflection-Fourier Transform Infrared Spectroscopic Data to Confirm the Origin of Honeys
    Hennessy, Siobhan
    Downey, Gerard
    O'Donnell, Colm
    [J]. APPLIED SPECTROSCOPY, 2008, 62 (10) : 1115 - 1123
  • [22] Evaluation of physico-chemical properties, trace metal content and antioxidant activity of Indian honeys
    Kamboj, Rajni
    Bera, Manav Bandhu
    Nanda, Vikas
    [J]. INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2013, 48 (03) : 578 - 587
  • [23] Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses
    Karabagias, Ioannis K.
    Badeka, Anastasia V.
    Kontakos, Stavros
    Karabournioti, Sofia
    Kontominas, Michael G.
    [J]. FOOD CHEMISTRY, 2014, 165 : 181 - 190
  • [24] Physicochemical Parameters as a Tool for the Assessment of Origin of Honey
    Lazarevic, Kristina B.
    Jovetic, Milica S.
    Tesic, Zivoslav Lj.
    [J]. JOURNAL OF AOAC INTERNATIONAL, 2017, 100 (04) : 840 - 851
  • [25] Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys
    Liu, Wen
    Zhang, Yuying
    Yang, Si
    Han, Donghai
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 196 : 123 - 130
  • [26] VIS/NIR imaging application for honey floral origin determination
    Minaei, Saeid
    Shafiee, Sahameh
    Polder, Gerrit
    Moghadam-Charkari, Nasrolah
    van Ruth, Saskia
    Barzegar, Mohsen
    Zahiri, Javad
    Alewijn, Martin
    Kus, Piotr M.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2017, 86 : 218 - 225
  • [27] Nmr T., 2011, NMR SPECTROSC CLASS, P1
  • [28] Honey botanical origin classification using hyperspectral imaging and machine learning
    Noviyanto, Ary
    Abdulla, Waleed H.
    [J]. JOURNAL OF FOOD ENGINEERING, 2020, 265
  • [29] Noviyanto A, 2017, EUR SIGNAL PR CONF, P473, DOI 10.23919/EUSIPCO.2017.8081252
  • [30] Honey authentication using rheological and physicochemical properties
    Oroian, Mircea
    Ropciuc, Sorina
    Paduret, Sergiu
    [J]. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2018, 55 (12): : 4711 - 4718