A Review on Automatic Classification of Honey Botanical Origins using Machine Learning

被引:2
作者
Al-Awadhi, Mokhtar A. [1 ]
Deshmukh, Ratnadeep R. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Comp Sci & IT, Aurangabad, Maharashtra, India
来源
2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021) | 2021年
关键词
honey authentication; honey botanical origin classification; machine learning; spectroscopy; FLORAL ORIGIN; ADULTERATION DETECTION; RAMAN-SPECTROSCOPY; DISCRIMINATION; AUTHENTICATION; CHEMOMETRICS; SENSOR; TOOL;
D O I
10.1109/MTICTI53925.2021.9664758
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Honey botanical origin classification is essential to honey authentication and honey botanical origin mislabeling prevention. Recently, several researchers have used advanced analytical techniques for classifying honey floral sources. These methods have incorporated different acquisition technologies and machine learning (ML) models. In this paper, we review state-of-the-art approaches for classifying honey botanical sources. We discuss the various technologies used for measuring honey constituents, honey physical and chemical properties, and technologies for capturing honey spatial and spectral data. Also, we discuss the ML techniques and their classification performances. We give recommendations for future work at the end of this paper.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 47 条
  • [1] A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging
    Afsah-Hejri, Leili
    Hajeb, Parvaneh
    Ara, Parsa
    Ehsani, Reza J.
    [J]. COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2019, 18 (05) : 1563 - 1621
  • [2] AL-AWADHI MA, 2021, 2021 Smart Technologies, Communication and Robotics (STCR), P1, DOI DOI 10.1109/STCR51658.2021.9588907
  • [3] Neural networks applied to discriminate botanical origin of honeys
    Anjos, Ofelia
    Iglesias, Carla
    Peres, Fatima
    Martinez, Javier
    Garcia, Angela
    Taboada, Javier
    [J]. FOOD CHEMISTRY, 2015, 175 : 128 - 136
  • [4] Validation of botanical origins and geographical sources of some Saudi honeys using ultraviolet spectroscopy and chemometric analysis
    Ansari, Mohammad Javed
    Al-Ghamdi, Ahmad
    Khan, Khalid Ali
    Adgaba, Nuru
    El-Ahmady, Sherweit H.
    Gad, Haidy A.
    Roshan, Abdulrahman
    Meo, Sultan Ayoub
    Kolyali, Sevgi
    [J]. SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2018, 25 (02) : 377 - 382
  • [5] Chen H., 2016, J SCI FOOD AGR, V97
  • [6] Fast honey classification using infrared spectrum and machine learning
    Chien, Hung-Yu
    Shih, An-Tong
    Yang, Bo-Shuen
    Hsiao, Vincent K. S.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (06) : 6874 - 6891
  • [7] Classification of Unifloral Honeys from SARDINIA (Italy) by ATR-FTIR Spectroscopy and Random Forest
    Ciulu, Marco
    Oertel, Elisa
    Serra, Rosanna
    Farre, Roberta
    Spano, Nadia
    Caredda, Marco
    Malfatti, Luca
    Sanna, Gavino
    [J]. MOLECULES, 2021, 26 (01):
  • [8] Chemometric treatment of simple physical and chemical data for the discrimination of unifloral honeys
    Ciulu, Marco
    Serra, Rosanna
    Caredda, Marco
    Salis, Severyn
    Floris, Ignazio
    Pilo, Maria Itria
    Spano, Nadia
    Panzanelli, Angelo
    Sanna, Gavino
    [J]. TALANTA, 2018, 190 : 382 - 390
  • [9] Honey characterization and adulteration detection by pattern recognition applied on HPAEC-PAD profiles.: 1.: Honey floral species characterization
    Cordella, CBY
    Militao, JSLT
    Clément, MC
    Cabrol-Bass, D
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (11) : 3234 - 3242
  • [10] The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis
    Corvucci, Francesca
    Nobili, Lara
    Melucci, Dora
    Grillenzoni, Francesca-Vittoria
    [J]. FOOD CHEMISTRY, 2015, 169 : 297 - 304