Toward Methanol-Based Biomanufacturing: Emerging Strategies for Engineering Synthetic Methylotrophy in Saccharomyces cerevisiae

被引:7
作者
Kelso, Philip A. [1 ,2 ]
Chow, Louise K. M. [1 ,2 ]
Carpenter, Alex C. [1 ,2 ]
Paulsen, Ian T. [1 ,2 ]
Williams, Thomas C. [1 ,2 ]
机构
[1] Macquarie Univ, Sch Nat Sci, Sydney, NSW 2109, Australia
[2] Macquarie Univ, ARC Ctr Excellence Synthet Biol, Sydney, NSW 2109, Australia
来源
ACS SYNTHETIC BIOLOGY | 2022年 / 11卷 / 08期
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
C1; metabolism; synthetic methylotrophy; XuMP cycle; RuMP cycle; reductive glycine pathway; Saccharomyces cerevisiae; ALE; HIGH-LEVEL PRODUCTION; ESCHERICHIA-COLI; BACILLUS-METHANOLICUS; PICHIA-PASTORIS; CORYNEBACTERIUM-GLUTAMICUM; YEAST; METABOLISM; CHEMICALS; PATHWAY; GROWTH;
D O I
10.1021/acssynbio.2c00110
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The global expansion of biomanufacturing is currently limited by the availability of sugar-based microbial feedstocks, which require farmland for cultivation and therefore cannot support large increases in production without impacting the human food supply. One-carbon feedstocks, such as methanol, present an enticing alternative to sugar because they can be produced independently of arable farmland from organic waste, atmospheric carbon dioxide, and hydrocarbons such as biomethane, natural gas, and coal. The development of efficient industrial microorganisms that can convert one-carbon feedstocks into valuable products is an ongoing challenge. This review discusses progress in the field of synthetic methylotrophy with a focus on how it pertains to the important industrial yeast, Saccharomyces cerevisiae. Recent insights generated from engineering synthetic methylotrophic xyluloseand ribulose-monophosphate cycles, reductive glycine pathways, and adaptive laboratory evolution studies are critically assessed to generate novel strategies for the future engineering of methylotrophy in S. cerevisiae.
引用
收藏
页码:2548 / 2563
页数:16
相关论文
共 95 条
  • [11] Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol
    Chen, Frederic Y-H
    Jung, Hsin-Wei
    Tsuei, Chao-Yin
    Liao, James C.
    [J]. CELL, 2020, 182 (04) : 933 - +
  • [12] The Expanding World of Methylotrophic Metabolism
    Chistoserdova, Ludmila
    Kalyuzhnaya, Marina G.
    Lidstrom, Mary E.
    [J]. ANNUAL REVIEW OF MICROBIOLOGY, 2009, 63 : 477 - 499
  • [13] Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator
    de Vries, Stijn T.
    Yilmaz, Suzan
    Bar-Even, Arren
    Claassens, Nico J.
    Bordanaba-Florit, Guillermo
    Cotton, Charles A. R.
    De Maria, Alberto
    Finger-Bou, Max
    Friedeheim, Lukas
    Giner-Laguarda, Natalia
    Munar-Palmer, Marti
    Newell, William
    Scarinci, Giovanni
    Verbunt, Jari
    [J]. METABOLIC ENGINEERING, 2020, 62 : 30 - 41
  • [14] Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech
    Claassens, Nico J.
    [J]. TRENDS IN BIOTECHNOLOGY, 2021, 39 (04) : 327 - 329
  • [15] Industrial biomanufacturing: The future of chemical production
    Clomburg, James M.
    Crumbley, Anna M.
    Gonzalez, Ramon
    [J]. SCIENCE, 2017, 355 (6320)
  • [16] Comer Austin D, 2017, Metab Eng Commun, V5, P26, DOI 10.1016/j.meteno.2017.07.002
  • [17] Renewable methanol and formate as microbial feedstocks
    Cotton, Charles A. R.
    Claassens, Nico J.
    Benito-Vaquerizo, Sara
    Bar-Even, Arren
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2020, 62 : 168 - 180
  • [18] Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1
    Crowther, Gregory J.
    Kosaly, George
    Lidstrom, Mary E.
    [J]. JOURNAL OF BACTERIOLOGY, 2008, 190 (14) : 5057 - 5062
  • [19] Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae
    Dai, Zhongxue
    Gu, Honglian
    Zhang, Shangjie
    Xin, Fengxue
    Zhang, Wenming
    Dong, Weiliang
    Ma, Jiangfeng
    Jia, Honghua
    Jiang, Min
    [J]. BIORESOURCE TECHNOLOGY, 2017, 245 : 1407 - 1412
  • [20] Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks
    de Graaf, Bendert
    Clore, Adam
    McCullough, Amanda K.
    [J]. DNA REPAIR, 2009, 8 (10) : 1207 - 1214