Mining High-Level Features from Video using Associations and Correlations

被引:3
|
作者
Lin, Lin [1 ]
Shyu, Mei-Ling [1 ]
机构
[1] Univ Miami, Dept Elect & Comp Engn, Coral Gables, FL 33124 USA
来源
2009 IEEE THIRD INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2009) | 2009年
关键词
Association rule mining; Multiple Correspondence Analysis (MCA); Concept detection; SEMANTIC CONCEPT DETECTION;
D O I
10.1109/ICSC.2009.59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Association rule mining (ARM) has been studied in the areas of content-based multimedia retrieval and semantic concept detection due to its high efficiency and accuracy. Two important processes in mining the association rules for classification are rule generation and rule selection. In this paper, a novel high-level feature detection framework using the ARM technique together with the correlations among the feature-value pairs is proposed. A new association rule mining (ARM) algorithm has been developed, where the N-feature-value pairs are generated using a combined measure based on (1) the existence of the (N-1)-feature-value pairs (where N is larger than 1), (2) the correlation between different AT. feature-value pairs and the concept classes through Multiple Correspondence Analysis (MCA), and (3) the similarity representing the harmonic mean of the inter-similarity and intra-similarity. The final association classification rules are selected by using the calculated harmonic mean of the similarity values. The proposed framework enables the automatic discovery and generation of the N-feature-value pair association rules from the 1-feature-value pairs for classification. Experimenting with 15 high-level features (concepts) and benchmark data sets from TRECVID, our proposed framework achieves promising performance and outperforms three other well-known classifiers (Decision Trees, Support Vector Machine, and Neural Networks) which are commonly used for performance comparison in the TRECVID community.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 1 条
  • [1] Using Visual Context and Region Semantics for High-Level Concept Detection
    Mylonas, Phivos
    Spyrou, Evaggelos
    Avrithis, Yannis
    Kollias, Stefanos
    IEEE TRANSACTIONS ON MULTIMEDIA, 2009, 11 (02) : 229 - 243