Hybrid sensitivity-correlation regularisation matrix for electrical impedance tomography

被引:5
作者
Borijindargoon, Narong [1 ]
Ng, Boon Poh [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
matrix algebra; tomography; matrix inversion; medical image processing; electric impedance imaging; image reconstruction; singular value decomposition; inverse problems; array response correlation; prior knowledge; hybrid regularisation matrix; singular value decomposition domains; spatial value decomposition domains; fidelity-embedded regularisation; robust regularisation matrices; solution-norm; solution space; model-data fitness; matrix inversion process; noise amplified solution; regularisation framework; estimated solution; inverse problem; image reconstruction process; primary task; electrical impedance tomography; hybrid sensitivity-correlation regularisation matrix; RECONSTRUCTION;
D O I
10.1049/iet-smt.2018.5267
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In electrical impedance tomography, the primary task of image reconstruction process is to solve a discrete ill-posed inverse problem. The estimated solution is commonly obtained under a regularisation framework so that the noise amplified solution, which occurs during the matrix inversion process, can be avoided. The regularisation framework aims at balancing the model-data fitness while simultaneously constraining the solution space with additional prior (commonly prescribed through the regularisation matrix and solution-norm). In this study, a relationship between two robust regularisation matrices namely Newton one-step error reconstruction and fidelity-embedded regularisation is explicitly highlighted in both spatial and singular value decomposition domains. A hybrid regularisation matrix which encompasses the two prior knowledge, non-uniform sensitivity distribution and array response correlation, is then proposed as an alternative prior. Experimental results along with several evaluated performance parameters highlight the ability of the proposed prior to achieve a well-balanced and robust performance.
引用
收藏
页码:1092 / 1101
页数:10
相关论文
共 17 条
[1]   Electrical impedance tomography: Regularized imaging and contrast detection [J].
Adler, A ;
Guardo, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (02) :170-179
[2]   GREIT: a unified approach to 2D linear EIT reconstruction of lung images [J].
Adler, Andy ;
Arnold, John H. ;
Bayford, Richard ;
Borsic, Andrea ;
Brown, Brian ;
Dixon, Paul ;
Faes, Theo J. C. ;
Frerichs, Inez ;
Gagnon, Herve ;
Gaerber, Yvo ;
Grychtol, Bartlomiej ;
Hahn, Guenter ;
Lionheart, William R. B. ;
Malik, Anjum ;
Patterson, Robert P. ;
Stocks, Janet ;
Tizzard, Andrew ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) :S35-S55
[3]  
[Anonymous], 2008, P 2008 WORLD AUTOMAT
[4]  
[Anonymous], 2004, Electrical impedance tomography: methods, history and applications
[5]  
[Anonymous], 2010, DISCRETE INVERSE PRO, DOI DOI 10.1137/1.9780898718836
[6]  
Cheney M, 1990, Int J Imaging Syst Technol, V2, P66, DOI 10.1002/ima.1850020203
[7]   Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography [J].
Costa, Eduardo L. V. ;
Borges, Joao Batista ;
Melo, Alexandre ;
Suarez-Sipmann, Fernando ;
Toufen, Carlos, Jr. ;
Bohm, Stephan H. ;
Amato, Marcelo B. P. .
INTENSIVE CARE MEDICINE, 2009, 35 (06) :1132-1137
[8]   GENERALIZED CROSS-VALIDATION AS A METHOD FOR CHOOSING A GOOD RIDGE PARAMETER [J].
GOLUB, GH ;
HEATH, M ;
WAHBA, G .
TECHNOMETRICS, 1979, 21 (02) :215-223
[9]   THE USE OF THE L-CURVE IN THE REGULARIZATION OF DISCRETE III-POSED PROBLEMS [J].
HANSEN, PC ;
OLEARY, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1487-1503
[10]   A Fidelity-Embedded Regularization Method for Robust Electrical Impedance Tomography [J].
Lee, Kyounghun ;
Woo, Eung Je ;
Seo, Jin Keun .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (09) :1970-1977