Dynamics of Some Three-Dimensional Lotka-Volterra Systems

被引:6
作者
Llibre, Jaume [1 ]
Zhang, Xiang [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
关键词
Lotka-Volterra system; invariant; global dynamics; phase portrait;
D O I
10.1007/s00009-017-0927-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the dynamics of the following two Lotka-Volterra differential systems: over dot(x) = x(r + ay = bz), over dot(x) = x(r + ax + by + cz), over dot(y) = y(r - ax + cz), and over dot (y) = y(r + ax + dy + ez), over dot(z) = z(r - bx - cy), over dot(z) = z(r + ax + dy + fz). We analyze the biological meaning of the dynamics of these Lotka-Volterra systems
引用
收藏
页数:13
相关论文
共 18 条
[1]   On the global flow of a 3-dimensional Lotka-Volterra system [J].
Alavez-Ramirez, Justino ;
Ble, Gamaliel ;
Castellanos, Victor ;
Llibre, Jaume .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (10) :4114-4125
[2]  
[Anonymous], 1936, Gi. Inst. Ital. Attuari
[4]  
Busse FH, 1978, TRANSITION TURBULENC
[5]   Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2 [J].
Cairo, Laurent ;
Llibre, Jaume .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6329-6348
[6]   BOUNDED POLYNOMIAL VECTOR-FIELDS [J].
CIMA, A ;
LLIBRE, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) :557-580
[7]  
Dumortier F, 2006, UNIVERSITEXT, P1
[8]  
Glansdorf P., 1971, Thermodynamic Theory of Structures, Stability and Fluctuations
[9]   OPTIMAL HARVESTING OF ECOLOGICALLY INTERDEPENDENT FISH SPECIES [J].
HANNESSON, R .
JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 1983, 10 (04) :329-345
[10]  
Laval G., 1975, P SUMM SCH OR PHYS G