Quantum computational geodesics

被引:2
作者
Brandt, Howard E. [1 ]
机构
[1] USA, Res Lab, Adelphi, MD USA
关键词
quantum computing; quantum circuits; quantum complexity; Riemannian geometry; quantum computational geodesics; Lax equation;
D O I
10.1080/09500340903180517
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The purpose of this paper is to mathematically investigate characteristics of a geodesic equation describing locally minimum complexity paths in the special unitary group manifold representing the unitary evolution of n qubits associated with a quantum computation. The geodesic equation is a nonlinear differential matrix equation of the Lax type. A simple local initial-value solution is elaborated for the case of three qubits.
引用
收藏
页码:2112 / 2117
页数:6
相关论文
共 50 条
[31]   Numerical simulations of noisy quantum circuits for computational chemistry [J].
Jerimiah Wright ;
Meenambika Gowrishankar ;
Daniel Claudino ;
Phillip C. Lotshaw ;
Thien Nguyen ;
Alexander J. McCaskey ;
Travis S. Humble .
Materials Theory, 6 (1)
[32]   Geometric algebra and information geometry for quantum computational software [J].
Cafaro, Carlo .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 470 :154-196
[33]   Quantum machine learning: A comprehensive review of integrating AI with quantum computing for computational advancements [J].
Devadas, Raghavendra M. ;
Sowmya, T. .
METHODSX, 2025, 14
[34]   On the role of entanglement in quantum-computational speed-up [J].
Jozsa, R ;
Linden, N .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2036) :2011-2032
[35]   Computational turbulent combustion in the age of artificial intelligence and quantum information [J].
Givi, Peyman .
INTERNATIONAL JOURNAL OF MATHEMATICS AND PHYSICS, 2021, 12 (01) :4-11
[36]   Higher order geodesics in Lie groups [J].
Tomasz Popiel .
Mathematics of Control, Signals, and Systems, 2007, 19 :235-253
[37]   Higher order geodesics in Lie groups [J].
Popiel, Tomasz .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2007, 19 (03) :235-253
[38]   Towards Observable Quantum Turing Machines: Fundamentals, Computational Power, and Universality [J].
Perdrix, Simon .
INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2011, 7 (04) :291-311
[39]   A Relational Time-Symmetric Framework for Analyzing the Quantum Computational Speedup [J].
G. Castagnoli ;
E. Cohen ;
A. K. Ekert ;
A. C. Elitzur .
Foundations of Physics, 2019, 49 :1200-1230
[40]   Quantum computing with error mitigation for data-driven computational homogenization [J].
Kuang, Zengtao ;
Xu, Yongchun ;
Huang, Qun ;
El Kihal, Chafik ;
El Kihal, Chafik ;
Hu, Heng .
COMPOSITE STRUCTURES, 2025, 351