BRANCHING BROWNIAN MOTION WITH SPATIALLY HOMOGENEOUS AND POINT-CATALYTIC BRANCHING

被引:5
作者
Bocharov, Sergey [1 ]
Wang, Li [2 ]
机构
[1] Zhejiang Univ, Dept Math, Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
[2] Beijing Univ Chem Technol, Sch Sci, Beijing, Peoples R China
关键词
Branching Brownian motion; local times; LIMIT-THEOREM; FRONTIER; EQUATION;
D O I
10.1017/jpr.2019.51
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a model of branching Brownian motion in which the usual spatially homogeneous branching and catalytic branching at a single point are simultaneously present. We establish the almost sure growth rates of population in certain time-dependent regions and as a consequence the first-order asymptotic behaviour of the rightmost particle.
引用
收藏
页码:891 / 917
页数:27
相关论文
共 19 条
[1]  
[Anonymous], 1997, CLASSICAL MODERN BRA
[2]   Branching Brownian Motion with Catalytic Branching at the Origin [J].
Bocharov, Sergey ;
Harris, Simon C. .
ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) :201-228
[3]   MAXIMAL DISPLACEMENT OF BRANCHING BROWNIAN-MOTION [J].
BRAMSON, MD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :531-581
[4]   Spread of a catalytic branching random walk on a multidimensional lattice [J].
Bulinskaya, Ekaterina Vl .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (07) :2325-2340
[5]   The spread of a catalytic branching random walk [J].
Carmona, Philippe ;
Hu, Yueyun .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02) :327-351
[6]   A SUPER-BROWNIAN MOTION WITH A SINGLE-POINT CATALYST [J].
DAWSON, DA ;
FLEISCHMANN, K .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 49 (01) :3-40
[7]  
Durrett R., 1996, PROBABILITY THEORY E
[8]  
Engländer L, 2002, ANN PROBAB, V30, P683
[9]   A Spine Approach to Branching Diffusions with Applications to Lp-convergence of Martingales [J].
Hardy, Robert ;
Harris, Simon C. .
SEMINAIRE DE PROBABILITES XLII, 2009, 1979 :281-330
[10]   Branching Brownian motion with an inhomogeneous breeding potential [J].
Harris, J. W. ;
Harris, S. C. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :793-801