Atomic-Dispersed Coordinated Unsaturated Nickel-Nitrogen Sites in Hollow Carbon Spheres for the Efficient Electrochemical CO2 Reduction

被引:18
作者
Yao, Pengfei [1 ,2 ]
Zhang, Jiangwei [3 ]
Qiu, Yanling [1 ]
Zheng, Qiong [1 ]
Zhang, Huamin [1 ]
Yan, Jingwang [1 ]
Li, Xianfeng [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide reduction; single atom; nickel-nitrogen active sites; low overpotential; high selectivity; OXYGEN REDUCTION; PORE-SIZE; X-RAY; SINGLE; METAL; ELECTROREDUCTION; CATALYSTS; IDENTIFICATION; NANOPARTICLES; NANOTUBES;
D O I
10.1021/acssuschemeng.1c00743
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reducing carbon dioxide to high value-added chemicals is of high importance due to its vital role in mitigating CO2 emission and energy crisis. However, seeking for robust catalysts with low overpotential, high selectivity, and stability is extremely challenging. Herein, a single Ni atom anchored on an N-doped carbon (Ni-N-C) catalyst was designed and prepared via a facile synthesis method to embed highly and evenly dispersed, coordinated unsaturated nickel-nitrogen active sites into a hollow carbon matrix with abundant micropores. The prepared Ni-N-C catalysts possess a unique electronic structure, coordination environment, and maximized atomic utilization, which accordingly show a higher intrinsic activity and remarkable selectivity for the electrochemical reduction of CO2. Additionally, the coordination structure and content of Ni can be easily modulated by changing the calcination temperature, which plays a vital role for the catalytical performance. As a result, the Ni-N-C catalysts achieve over 90% for CO at a wide potential window from -0.6 to -1.0 V with a maximum value of 97% at -0.8 V. This paper paves a facile way to develop high-performance single atomic catalysts with a tunable Ni-N coordination structure for CO2 reduction.
引用
收藏
页码:5437 / 5444
页数:8
相关论文
共 42 条
[1]   Measurement of Interlayer Screening Length of Layered Graphene by Plasmonic Nanostructure Resonances [J].
Chen, Hsiang-An ;
Hsin, Cheng-Lun ;
Huang, Yu-Ting ;
Tang, Ming Lee ;
Dhuey, Scott ;
Cabrini, Stefano ;
Wu, Wen-Wei ;
Leone, Stephen R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (43) :22211-22217
[2]   Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogen-Doped Carbons with Encapsulated Metal Nanoparticles [J].
Chen, Ming-Xi ;
Zhu, Mengzhao ;
Zuo, Ming ;
Chu, Sheng-Qi ;
Zhang, Jing ;
Wu, Yuen ;
Liang, Hai-Wei ;
Feng, Xinliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (04) :1627-1633
[3]   Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 [J].
Cheng, Yi ;
Zhao, Shiyong ;
Li, Haobo ;
He, Shuai ;
Veder, Jean-Pierre ;
Johannessen, Bernt ;
Xiao, Jianping ;
Lu, Shanfu ;
Pan, Jian ;
Chisholm, Mattew F. ;
Yang, Shi-Ze ;
Liu, Chang ;
Chen, Jingguang G. ;
Jiang, San Ping .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 :294-303
[4]   Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction [J].
Deng, Dehui ;
Yu, Liang ;
Chen, Xiaoqi ;
Wang, Guoxiong ;
Jin, Li ;
Pan, Xiulian ;
Deng, Jiao ;
Sun, Gongquan ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :371-375
[5]   Activation of Ni Particles into Single Ni-N Atoms for Efficient Electrochemical Reduction of CO2 [J].
Fan, Qun ;
Hou, Pengfei ;
Choi, Changhyeok ;
Wu, Tai-Sing ;
Hong, Song ;
Li, Fang ;
Soo, Yun-Liang ;
Kang, Peng ;
Jung, Yousung ;
Sun, Zhenyu .
ADVANCED ENERGY MATERIALS, 2020, 10 (05)
[6]   General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities [J].
Fei, Huilong ;
Dong, Juncai ;
Feng, Yexin ;
Allen, Christopher S. ;
Wan, Chengzhang ;
Volosskiy, Boris ;
Li, Mufan ;
Zhao, Zipeng ;
Wang, Yiliu ;
Sun, Hongtao ;
An, Pengfei ;
Chen, Wenxing ;
Guo, Zhiying ;
Lee, Chain ;
Chen, Dongliang ;
Shakir, Imran ;
Liu, Mingjie ;
Hu, Tiandou ;
Li, Yadong ;
Kirkland, Angus I. ;
Duan, Xiangfeng ;
Huang, Yu .
NATURE CATALYSIS, 2018, 1 (01) :63-72
[7]   Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting CO2 Reduction [J].
Gong, Yun-Nan ;
Jiao, Long ;
Qian, Yunyang ;
Pan, Chun-Yang ;
Zheng, Lirong ;
Cai, Xuechao ;
Liu, Bo ;
Yu, Shu-Hong ;
Jiang, Hai-Long .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (07) :2705-2709
[8]   Formation of Ni3C nanocrystals by thermolysis of nickel acetylacetonate in oleylamine:: Characterization using hard X-ray photoelectron spectroscopy [J].
Goto, Yuji ;
Taniguchi, Kota ;
Omata, Takahisa ;
Otsuka-Yao-Matsuo, Shinya ;
Ohashi, Naoki ;
Ueda, Shigenori ;
Yoshikawa, Hideki ;
Yamashita, Yoshiyuki ;
Oohashi, Hirofumi ;
Kobayashi, Keisuke .
CHEMISTRY OF MATERIALS, 2008, 20 (12) :4156-4160
[9]   CO2-Filling Capacity and Selectivity of Carbon Nanopores: Synthesis, Texture, and Pore-Size Distribution from Quenched-Solid Density Functional Theory (QSDFT) [J].
Hu, Xin ;
Radosz, Maciej ;
Cychosz, Katie A. ;
Thommes, Matthias .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (16) :7068-7074
[10]   Selective CO2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts [J].
Hu, Xin-Ming ;
Hval, Halvor Hoen ;
Bjerglund, Emil Tveden ;
Dalgaard, Kirstine Junker ;
Madsen, Monica Rohde ;
Pohl, Marga-Martina ;
Welter, Edmund ;
Lamagni, Paolo ;
Buhl, Kristian Birk ;
Bremholm, Martin ;
Beller, Matthias ;
Pedersen, Steen Uttrup ;
Skrydstrup, Troels ;
Daasbjerg, Kim .
ACS CATALYSIS, 2018, 8 (07) :6255-6264