Recursive maximum entropy algorithm and its application to the luminescence lifetime distribution recovery

被引:44
作者
Vinogradov, SA [1 ]
Wilson, DF [1 ]
机构
[1] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
关键词
regularization; distribution analysis; inverse problems; maximum entropy method; luminescence lifetimes;
D O I
10.1366/0003702001950210
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A simple algorithm, based on recursive quadratic optimization, is suggested for the numerical inversion of integral transforms. The algorithm was found particularly useful for "small scale" problems, with the number of independent parameters ranging between 100 and 200. The programming, parameterization, and performance of the algorithm are discussed, as well its application to the analysis of time-resolved luminescence data.
引用
收藏
页码:849 / 855
页数:7
相关论文
共 29 条
[1]  
BABUSHKINSKY A, 1994, ILL POSED PROBLEMS T
[2]  
Bertsekas D, 1996, Constrained Optimization and Lagrange Multiplier Methods
[3]  
BROCHON JC, 1994, METHOD ENZYMOL, V240, P262
[4]  
CORNWELL TJ, 1985, ASTRON ASTROPHYS, V143, P77
[5]  
Engl H., 1996, Regularization of Inverse Problems
[6]   CONVERGENCE-RATES FOR MAXIMUM-ENTROPY REGULARIZATION [J].
ENGL, HW ;
LANDL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (05) :1509-1536
[7]  
Gull S. F., 1984, INDIRECT IMAGING, P267
[8]   Exponential analysis in physical phenomena [J].
Istratov, AA ;
Vyvenko, OF .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (02) :1233-1257
[9]  
JANES ET, 1983, PAPERS PROBABILITY S
[10]  
KAUFFMANN HF, 1991, NATO ADV SCI I B-PHY, V258, P503