Mapping Forest Aboveground Biomass Using Multisource Remotely Sensed Data

被引:33
作者
Ehlers, Dekker [1 ]
Wang, Chao [2 ]
Coulston, John [3 ]
Zhang, Yulong [4 ]
Pavelsky, Tamlin [2 ]
Frankenberg, Elizabeth [5 ,6 ]
Woodcock, Curtis [7 ]
Song, Conghe [1 ,5 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Geog, Chapel Hill, NC 27599 USA
[2] Univ North Carolina Chapel Hill, Dept Earth Marine & Environm Sci, Chapel Hill, NC 27599 USA
[3] USDA Forest Serv, Eastern Forest Environm Threat Assessment Ctr, Raleigh, NC 27709 USA
[4] Univ Tennessee Knoxville, Inst Secure & Sustainable Environm, Knoxville, TN 37996 USA
[5] Univ North Carlina Chapel Hill, Carolina Populat Ctr, Chapel Hill, NC 27599 USA
[6] Univ North Carlina Chapel Hill, Dept Sociol, Chapel Hill, NC 27599 USA
[7] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
关键词
forest aboveground biomass; random forest; optical remote sensing; LiDAR; RaDAR; TREE CROWN SIZE; LANDSAT TM DATA; BOREAL FORESTS; RADAR BACKSCATTER; AIRBORNE LIDAR; WOODY BIOMASS; UNITED-STATES; CLOSED-CANOPY; LONG-TERM; SATELLITE;
D O I
10.3390/rs14051115
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The majority of the aboveground biomass on the Earth's land surface is stored in forests. Thus, forest biomass plays a critical role in the global carbon cycle. Yet accurate estimate of forest aboveground biomass (FAGB) remains elusive. This study proposed a new conceptual model to map FAGB using remotely sensed data from multiple sensors. The conceptual model, which provides guidance for selecting remotely sensed data, is based on the principle of estimating FAGB on the ground using allometry, which needs species, diameter at breast height (DBH), and tree height as inputs. Based on the conceptual model, we used multiseasonal Landsat images to provide information about species composition for the forests in the study area, LiDAR data for canopy height, and the image texture and image texture ratio at two spatial resolutions for tree crown size, which is related to DBH. Moreover, we added RaDAR data to provide canopy volume information to the model. All the data layers were fed to a Random Forest (RF) regression model. The study was carried out in eastern North Carolina. We used biomass from the USFS Forest Inventory and Analysis plots to train and test the model performance. The best model achieved an R-2 of 0.625 with a root mean squared error (RMSE) of 18.8 Mg/ha (47.6%) with the "out-of-bag" samples at 30 x 30 m spatial resolution. The top five most important variables include the 95th, 85th, 75th, and 50th percentile heights of the LiDAR points and their standard deviations of 85th heights. Numerous features from multiseasonal Sentinel-1 C-Band SAR, multiseasonal Landsat 8 imagery along with image texture features from very high-resolution imagery were selected. But the importance of the height metrics dwarfed all other variables. More tests of the conceptual model in places with a broader range of biomass and more diverse species composition are needed to evaluate the importance of other input variables.
引用
收藏
页数:19
相关论文
共 84 条
[1]   A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J].
Allen, Craig D. ;
Macalady, Alison K. ;
Chenchouni, Haroun ;
Bachelet, Dominique ;
McDowell, Nate ;
Vennetier, Michel ;
Kitzberger, Thomas ;
Rigling, Andreas ;
Breshears, David D. ;
Hogg, E. H. ;
Gonzalez, Patrick ;
Fensham, Rod ;
Zhang, Zhen ;
Castro, Jorge ;
Demidova, Natalia ;
Lim, Jong-Hwan ;
Allard, Gillian ;
Running, Steven W. ;
Semerci, Akkin ;
Cobb, Neil .
FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (04) :660-684
[2]   Employing a Method on SAR and Optical Images for Forest Biomass Estimation [J].
Amini, Jalal ;
Sumantyo, Josaphat Tetuko Sri .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (12) :4020-4026
[3]   Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska [J].
Andersen, Hans-Erik ;
Strunk, Jacob ;
Temesgen, Hailemariam ;
Atwood, Donald ;
Winterberger, Ken .
CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (06) :596-611
[4]  
[Anonymous], 1992, J BEIJING FOR UNIV
[5]  
[Anonymous], 1979, EQUATIONS ESTIMATING
[6]   An integrated pan-tropical biomass map using multiple reference datasets [J].
Avitabile, Valerio ;
Herold, Martin ;
Heuvelink, Gerard B. M. ;
Lewis, Simon L. ;
Phillips, Oliver L. ;
Asner, Gregory P. ;
Armston, John ;
Ashton, Peter S. ;
Banin, Lindsay ;
Bayol, Nicolas ;
Berry, Nicholas J. ;
Boeckx, Pascal ;
de Jong, Bernardus H. J. ;
DeVries, Ben ;
Girardin, Cecile A. J. ;
Kearsley, Elizabeth ;
Lindsell, Jeremy A. ;
Lopez-Gonzalez, Gabriela ;
Lucas, Richard ;
Malhi, Yadvinder ;
Morel, Alexandra ;
Mitchard, Edward T. A. ;
Nagy, Laszlo ;
Qie, Lan ;
Quinones, Marcela J. ;
Ryan, Casey M. ;
Ferry, Slik J. W. ;
Sunderland, Terry ;
Laurin, Gaia Vaglio ;
Gatti, Roberto Cazzolla ;
Valentini, Riccardo ;
Verbeeck, Hans ;
Wijaya, Arief ;
Willcock, Simon .
GLOBAL CHANGE BIOLOGY, 2016, 22 (04) :1406-1420
[7]   Geostatistical estimation of forest biomass in interior Alaska combining Landsat-derived tree cover, sampled airborne lidar and field observations [J].
Babcock, Chad ;
Finley, Andrew O. ;
Andersen, Hans-Erik ;
Pattison, Robert ;
Cook, Bruce D. ;
Morton, Douglas C. ;
Alonzo, Michael ;
Nelson, Ross ;
Gregoire, Timothy ;
Ene, Liviu ;
Gobaldten, Terje ;
Naesset, Erik .
REMOTE SENSING OF ENVIRONMENT, 2018, 212 :212-230
[8]   A first map of tropical Africa's above-ground biomass derived from satellite imagery [J].
Baccini, A. ;
Laporte, N. ;
Goetz, S. J. ;
Sun, M. ;
Dong, H. .
ENVIRONMENTAL RESEARCH LETTERS, 2008, 3 (04)
[9]   Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps [J].
Baccini, A. ;
Goetz, S. J. ;
Walker, W. S. ;
Laporte, N. T. ;
Sun, M. ;
Sulla-Menashe, D. ;
Hackler, J. ;
Beck, P. S. A. ;
Dubayah, R. ;
Friedl, M. A. ;
Samanta, S. ;
Houghton, R. A. .
NATURE CLIMATE CHANGE, 2012, 2 (03) :182-185
[10]  
Bechtold W.A., 2015, The Enhanced Forest Inventory and Analysis Program-National Sampling Design and Estimation Procedures (SRS-GTR-80