Entanglement Robustness via Spatial Deformation of Identical Particle Wave Functions

被引:17
|
作者
Piccolini, Matteo [1 ,2 ]
Nosrati, Farzam [1 ,2 ]
Compagno, Giuseppe [3 ]
Livreri, Patrizia [1 ]
Morandotti, Roberto [2 ]
Lo Franco, Rosario [1 ]
机构
[1] Univ Palermo, Dipartimento Ingn, Viale Sci, I-90128 Palermo, Italy
[2] INRS EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[3] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Via Archirafi 36, I-90123 Palermo, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
entanglement protection; indistinguishable particles; open quantum systems; QUANTUM ENTANGLEMENT; DECOHERENCE; INDISTINGUISHABILITY; TELEPORTATION; UNIVERSALITY; DISTILLATION; SYSTEMS; STATE; NOISE;
D O I
10.3390/e23060708
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show that spatial indistinguishability of identical qubits can be utilized within the sLOCC operational framework to partially recover the quantum correlations spoiled by the environment. A general behavior emerges: the higher the spatial indistinguishability achieved via deformation, the larger the amount of recovered entanglement.
引用
收藏
页数:25
相关论文
共 39 条
  • [1] Measurement of Identical Particle Entanglement and the Influence of Antisymmetrization
    Becher, J. H.
    Sindici, E.
    Klemt, R.
    Jochim, S.
    Daley, A. J.
    Preiss, P. M.
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [2] Entanglement generation through particle detection in systems of identical fermions
    Bouvrie, P. A.
    Valdes-Hernandez, A.
    Majtey, A. P.
    Zander, C.
    Plastino, A. R.
    ANNALS OF PHYSICS, 2017, 383 : 401 - 415
  • [3] Robustness of continuous-variable entanglement via geometrical nonlinearity
    Djorwe, Philippe
    Engo, S. G. Nana
    Woafo, Paul
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [4] Exact diagonalization using hierarchical wave functions and calculation of topological entanglement entropy
    Gaur, Deepak
    Sable, Hrushikesh
    Angom, D.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [5] Entangling three identical particles via spatial overlap
    Lee, Donghwa
    Pramanik, Tanumoy
    Hong, Seongjin
    Cho, Young-Wook
    Lim, Hyang-Tag
    Chin, Seungbeom
    Kim, Yong-Su
    OPTICS EXPRESS, 2022, 30 (17) : 30525 - 30535
  • [6] Entanglement constraint on wave-particle duality for tripartite systems
    Li, Z. J.
    He, Y. Q.
    Ding, D.
    Gao, T.
    Yan, F. L.
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [7] Wave-particle duality in single-photon entanglement
    Li, Wei
    Zhao, Shengmei
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (05):
  • [8] Second entanglement and (re)Born wave functions in Stochastic Electrodynamics
    Kracklauer, AF
    QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS - 3, 2006, 810 : 343 - 352
  • [9] ENTANGLEMENT PROPERTIES OF QUANTUM MANY-BODY WAVE FUNCTIONS
    Clark, J. W.
    Mandilara, A.
    Ristig, M. L.
    Kuerten, K. E.
    CONDENSED MATTER THEORIES, VOL 24, 2010, : 105 - +
  • [10] ENTANGLEMENT PROPERTIES OF QUANTUM MANY-BODY WAVE FUNCTIONS
    Clark, J. W.
    Mandilara, A.
    Ristig, M. L.
    Kuerten, K. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (20-21): : 4041 - 4057