ASkew-Gaussian Spatio-Temporal Process with Non-Stationary Correlation Structure

被引:1
|
作者
Barzegar, Zahra [1 ]
Rivaz, Firoozeh [1 ]
Khaledi, Majid Jafari [2 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran, Iran
[2] Tarbiat Modares Univ, Fac Math Sci, Dept Stat, Tehran, Iran
来源
JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY | 2019年 / 18卷 / 02期
关键词
Closed-Skew Normal Distribution; Low-Rank Models; Non-Stationarity; Spatio-Temporal Data; BAYESIAN PREDICTION; CONVOLUTION;
D O I
10.29252/jirss.18.2.63
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a new class of spatio-temporal process models that can simultaneously capture skewness and non-stationarity. The proposed approach which is based on using the closed skew-normal distribution in the low-rank representation of stochastic processes, has several favorable properties. In particular, it greatly reduces the dimension of the spatio-temporal latent variables and induces flexible correlation structures. Bayesian analysis of the model is implemented through a Gibbs MCMC algorithm which incorporates a version of the Kalman filtering algorithm. All fully conditional posterior distributions have closed forms which show another advantageous property of the proposed model. We demonstrate the efficiency of our model through an extensive simulation study and an application to a real data set comprised of precipitation measurements.
引用
收藏
页码:63 / 85
页数:23
相关论文
共 50 条
  • [1] Non-stationary spatio-temporal modeling using the stochastic advection-diffusion equation
    Berild, Martin Outzen
    Fuglstad, Geir-Arne
    SPATIAL STATISTICS, 2024, 64
  • [2] An additive approximate Gaussian process model for large spatio-temporal data
    Ma, Pulong
    Konomi, Bledar A.
    Kang, Emily L.
    ENVIRONMETRICS, 2019, 30 (08)
  • [3] Spatio-temporal response robust parameter design based on Gaussian process model
    Zhai C.
    Wang J.
    Ma Y.
    Feng Z.
    Yang S.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2023, 43 (02): : 537 - 555
  • [4] Nonparametric estimation of the spatio-temporal covariance structure
    Yang, Kai
    Qiu, Peihua
    STATISTICS IN MEDICINE, 2019, 38 (23) : 4555 - 4565
  • [5] Non-stationary correlation matrices and noise
    Martins, Andre C. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) : 552 - 558
  • [6] A non-stationary factor copula model for non-Gaussian spatial data
    Mondal, Sagnik
    Krupskii, Pavel
    Genton, Marc G.
    STAT, 2024, 13 (03):
  • [7] Sparse Spatio-temporal Gaussian Processes with General Likelihoods
    Hartikainen, Jouni
    Riihimaki, Jaakko
    Sarkka, Simo
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 193 - 200
  • [8] KNN-based Kalman filter: An efficient and non-stationary method for Gaussian process regression
    Wang, Yali
    Chaib-draa, Brahim
    KNOWLEDGE-BASED SYSTEMS, 2016, 114 : 148 - 155
  • [9] Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes
    Han, Lifeng
    He, Changhan
    Dinh, Huy
    Fricks, John
    Kuang, Yang
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (07)
  • [10] Locally stationary spatio-temporal interpolation of Argo profiling float data
    Kuusela, Mikael
    Stein, Michael L.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2220):