Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation

被引:21
作者
Emura, Takeshi [1 ]
Hu, Ya-Hsuan [1 ]
Konno, Yoshihiko [2 ]
机构
[1] Natl Cent Univ, Grad Inst Stat, Taoyuan, Taiwan
[2] Japan Womens Univ, Dept Math & Phys Sci, Tokyo, Japan
关键词
Asymptotic normality; Central limit theorem; Consistency; Maximum likelihood estimation; Survival analysis; Truncated data; SURVIVAL; MODELS;
D O I
10.1007/s00362-015-0730-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Biased sampling affects the inference for population parameters of interest if the sampling mechanism is not appropriately handled. This paper considers doubly-truncated data arising in lifetime data analysis in which samples are subject to both left- and right-truncations. To correct for the sampling bias with doubly-truncated data, maximum likelihood estimator (MLE) has been proposed under a parametric family called the special exponential family (Efron and Petrosian, in J Am Stat Assoc 94:824-834, 1999). However, there is still a lack of justifying the fundamental properties for the MLE, including consistency and asymptotic normality. In this paper, we point out that the classical asymptotic theory for the independent and identically distributed data is not suitable for studying the MLE under double-truncation due to the non-identical truncation intervals. Alternatively, we formalize the asymptotic results under independent but not identically distributed data that suitably takes into account for the between-sample heterogeneity of truncation intervals. We establish the consistency and asymptotic normality of the MLE under a reasonably simple set of regularity conditions. Then, we give asymptotically valid techniques to estimate standard errors and to construct confidence intervals. Simulations are conducted to verify the suggested techniques, and childhood cancer data are used for illustration.
引用
收藏
页码:877 / 909
页数:33
相关论文
共 33 条
[1]  
Andersen PK, 2002, STAT METHODS MED RES, V11, P91, DOI 10.1191/0962280202SM276ra
[2]  
[Anonymous], 2003, STAT MODEL METHODS L
[3]  
[Anonymous], 2022, Testing Statistical Hypotheses, DOI [DOI 10.1007/978-3-030-70578-7, 10.1007/978-3-030-70578-7]
[4]   Computationally simple estimation and improved efficiency for special cases of double truncation [J].
Austin, Matthew D. ;
Simon, David K. ;
Betensky, Rebecca A. .
LIFETIME DATA ANALYSIS, 2014, 20 (03) :335-354
[5]   ASYMPTOTIC PROPERTIES OF ML ESTIMATORS WHEN SAMPLING FROM ASSOCIATED POPULATIONS [J].
BRADLEY, RA ;
GART, JJ .
BIOMETRIKA, 1962, 49 (1-2) :205-&
[6]  
CASTILLO J, 1994, ANN I STAT MATH, V46, P57
[7]  
Cohen AC., 1991, TRUNCATED CENSORED S
[8]   Nonparametric estimation under length-biased sampling and type I censoring: A moment based approach [J].
De Una-Alvarez, J .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (04) :667-681
[9]   Nonparametric methods for doubly truncated data [J].
Efron, B ;
Petrosian, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) :824-834
[10]   An algorithm for estimating survival under a copula-based dependent truncation model [J].
Emura, T. ;
Murotani, K. .
TEST, 2015, 24 (04) :734-751