Group actions on treelike compact spaces

被引:15
作者
Glasner, Eli [1 ]
Megrelishvili, Michael [2 ]
机构
[1] Tel Aviv Univ, Dept Math, IL-6997801 Tel Aviv, Israel
[2] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
amenable group; dendrite; dendron; fragmentability; median pretree; proximal action; Rosenthal Banach space; tame dynamical system; DYNAMICAL-SYSTEMS; BANACH-SPACES; REPRESENTATIONS;
D O I
10.1007/s11425-018-9488-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that group actions on many treelike compact spaces are not too complicated dynamically. We first observe that an old argument of Seidler (1990) implies that every action of a topological group G on a regular continuum is null and therefore also tame. As every local dendron is regular, one concludes that every action of G on a local dendron is null. We then use a more direct method to show that every continuous group action of G on a dendron is Rosenthal representable, hence also tame. Similar results are obtained for median pretrees. As a related result, we show that Helly's selection principle can be extended to bounded monotone sequences defined on median pretrees (for example, dendrons or linearly ordered sets). Finally, we point out some applications of these results to continuous group actions on dendrites.
引用
收藏
页码:2447 / 2462
页数:16
相关论文
共 44 条
[21]  
Kuratowski K., 1968, TOPOLOGY, V2
[22]   UNIVERSAL MINIMAL FLOWS OF GENERALIZED WAZEWSKI DENDRITES [J].
Kwiatkowska, Aleksandra .
JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (04) :1618-1632
[23]   Groups Acting on Dendrons [J].
Malyutin A.V. .
Journal of Mathematical Sciences, 2016, 212 (5) :558-565
[24]  
[Малютин Андрей Валерьевич Malyutin Andrei Valer'evich], 2014, [Алгебра и анализ, St. Petersburg Mathematical Journal, Algebra i analiz], V26, P45
[25]   MINIMAL SETS FOR GROUP ACTIONS ON DENDRITES [J].
Marzougui, Habib ;
Naghmouchi, Issam .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) :4413-4425
[26]  
Megrelishvili M, 2003, TOPOL P, V27, P497
[27]   A note on tameness of families having bounded variation [J].
Megrelishvili, Michael .
TOPOLOGY AND ITS APPLICATIONS, 2017, 217 :20-30
[28]  
Nachbin L., 1965, Van Nostrand Mathematical Studies, V4
[29]   Dynamical properties of monotone dendrite maps [J].
Naghmouchi, Issam .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (01) :144-152
[30]   CHARACTERIZATION OF BANACH-SPACES CONTAINING L [J].
ROSENTHAL, HP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (06) :2411-2413