Group actions on treelike compact spaces

被引:15
作者
Glasner, Eli [1 ]
Megrelishvili, Michael [2 ]
机构
[1] Tel Aviv Univ, Dept Math, IL-6997801 Tel Aviv, Israel
[2] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
amenable group; dendrite; dendron; fragmentability; median pretree; proximal action; Rosenthal Banach space; tame dynamical system; DYNAMICAL-SYSTEMS; BANACH-SPACES; REPRESENTATIONS;
D O I
10.1007/s11425-018-9488-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that group actions on many treelike compact spaces are not too complicated dynamically. We first observe that an old argument of Seidler (1990) implies that every action of a topological group G on a regular continuum is null and therefore also tame. As every local dendron is regular, one concludes that every action of G on a local dendron is null. We then use a more direct method to show that every continuous group action of G on a dendron is Rosenthal representable, hence also tame. Similar results are obtained for median pretrees. As a related result, we show that Helly's selection principle can be extended to bounded monotone sequences defined on median pretrees (for example, dendrons or linearly ordered sets). Finally, we point out some applications of these results to continuous group actions on dendrites.
引用
收藏
页码:2447 / 2462
页数:16
相关论文
共 44 条
[1]  
Adeleke Samson A., 1998, Memoirs of the American Mathematical Society, V623
[2]  
[Anonymous], 1976, Lecture Notes in Math.
[3]  
[Anonymous], 1998, Aportaciones Mat. Comun.
[4]   Road systems and betweenness [J].
Bankston, Paul .
BULLETIN OF MATHEMATICAL SCIENCES, 2013, 3 (03) :389-408
[5]  
Bowditch B.H., 1999, MEMOIRS AM MATH SOC, V662
[6]   GROUP ACTIONS ON DENDRITES AND CURVES [J].
Duchesne, Bruno ;
Monod, Nicolas .
ANNALES DE L INSTITUT FOURIER, 2018, 68 (05) :2277-2309
[7]   REPRESENTATIONS OF DYNAMICAL SYSTEMS ON BANACH SPACES NOT CONTAINING l1 [J].
Glasner, E. ;
Megrelishvili, M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) :6395-6424
[8]  
Glasner E., 2006, C MATH, V104, P223, DOI 10.4064/cm104-2-5
[9]  
Glasner E., 2014, ARXIV14052588
[10]   On metrizable enveloping semigroups [J].
Glasner, Eli ;
Megrelishvili, Michael ;
Uspenskij, Vladimir V. .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 164 (01) :317-332