Derivation of the Fick's Law for the Lorentz Model in a Low Density Regime

被引:16
作者
Basile, G. [1 ]
Nota, A. [1 ]
Pezzotti, F. [1 ]
Pulvirenti, M. [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
关键词
BOLTZMANN-EQUATION; DIFFUSION; LIMIT; PARTICLE; GAS;
D O I
10.1007/s00220-015-2306-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Lorentz model in a slab with two mass reservoirs at the boundaries. We show that, in a low density regime, there exists a unique stationary solution for the microscopic dynamics, which converges to the stationary solution of the heat equation, namely to the linear profile of the density. In the same regime, the macroscopic current in the stationary state is given by the Fick's law, with the diffusion coefficient determined by the Green-Kubo formula.
引用
收藏
页码:1607 / 1636
页数:30
相关论文
共 14 条
[1]  
[Anonymous], ARXIV13053397
[2]  
[Anonymous], 1994, Applied Mathematical Sciences
[3]   A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers [J].
Basile, G. ;
Nota, A. ;
Pulvirenti, M. .
JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (06) :1087-1111
[4]   ON THE BOLTZMANN-EQUATION FOR THE LORENTZ GAS [J].
BOLDRIGHINI, C ;
BUNIMOVICH, LA ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (03) :477-501
[5]   The linear boltzmann equation for long-range forces: A derivation from particle systems [J].
Desvillettes, L ;
Pulvirenti, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (08) :1123-1145
[6]   A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions [J].
Desvillettes, L ;
Ricci, V .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) :1173-1189
[7]   Quantum diffusion of the random Schrodinger evolution in the scaling limit [J].
Erdos, Laszlo ;
Salmhofer, Manfred ;
Yau, Horng-Tzer .
ACTA MATHEMATICA, 2008, 200 (02) :211-277
[8]  
Esposito R, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P1
[9]  
Gallavotti G., 1999, STAT MECH
[10]   NON-EQUILIBRIUM MEASURES WHICH EXHIBIT A TEMPERATURE-GRADIENT - STUDY OF A MODEL [J].
GALVES, A ;
KIPNIS, C ;
MARCHIORO, C ;
PRESUTTI, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 81 (01) :127-147