Understanding Wind-Turbine Wake Breakdown Using Computational Fluid Dynamics

被引:16
|
作者
Carrion, M. [1 ]
Woodgate, M. [1 ]
Steijl, R. [1 ]
Barakos, G. N. [1 ]
Gomez-Iradi, S. [2 ]
Munduate, X. [2 ]
机构
[1] Univ Liverpool, Sch Engn, CFD Lab, Liverpool L63 3GH, Merseyside, England
[2] Natl Renewable Energy Ctr, Navarra 31621, Spain
关键词
LARGE-EDDY SIMULATION; SCHEMES; SOLVERS; FLOWS; MODEL; CFD;
D O I
10.2514/1.J053196
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This work explores the breakdown of the wake downstream of the Model Experiments in Controlled Conditions Project (known as the MEXICO project) wind-turbine rotor and assesses the capability of computational fluid dynamics in predicting its correct physical mechanism. The wake is resolved on a fine mesh able to capture the vortices up to eight rotor radii downstream of the blades. At a wind speed of 15m/s, the main frequency present in the computational fluid dynamics signals for up to four radii was the blade-passing frequency (21.4Hz), where the vortex cores fall on a perfect spiral. Between four and five radii downstream, higher-frequency content was present, which indicated the onset of instabilities and results in vortex pairing. The effect of modeling a 120deg azimuthally periodic domain and a 360deg three-bladed rotor domain was studied, showing similar predictions for the location of the onset of instabilities. An increased frequency content was captured in the latter case. Empirical and wake models were also explored, they were compared with computational fluid dynamics, and a combination of kinematic and field models was proposed. The obtained results are encouraging and suggest that the wake instability of wind turbines can be predicted with computational fluid dynamics methods, provided adequate mesh resolution is used.
引用
收藏
页码:588 / 602
页数:15
相关论文
共 50 条
  • [1] Review of computational fluid dynamics for wind turbine wake aerodynamics
    Sanderse, B.
    van der Pijl, S. P.
    Koren, B.
    WIND ENERGY, 2011, 14 (07) : 799 - 819
  • [2] Parametric dependencies of the yawed wind-turbine wake development
    Kleusberg, Elektra
    Schlatter, Philipp
    Henningson, Dan S.
    WIND ENERGY, 2020, 23 (06) : 1367 - 1380
  • [3] Numerical Investigation on the Effects of Forest Heterogeneity on Wind-Turbine Wake
    Adedipe, Taiwo
    Chaudhari, Ashvinkumar
    Hellsten, Antti
    Kauranne, Tuomo
    Haario, Heikki
    ENERGIES, 2022, 15 (05)
  • [4] Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations
    Lam, H. F.
    Peng, H. Y.
    RENEWABLE ENERGY, 2016, 90 : 386 - 398
  • [5] Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics
    Ghazalla, R. A.
    Mohamed, M. H.
    Hafiz, A. A.
    ENERGY, 2019, 189
  • [6] Analysis of the blade profile of the Savonius wind turbine using computational fluid dynamics
    Venkatesan, S. P.
    Venkatesh, S.
    Kumar, M. Sunil
    Selvan, S. Senthamizh
    Sai, Yugandhar
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, 43 (01) : 142 - 148
  • [7] Development of the Dual Vertical Axis Wind Turbine Using Computational Fluid Dynamics
    Naccache, Gabriel
    Paraschivoiu, Marius
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (12):
  • [8] Performance analysis of a vertical axis wind turbine using computational fluid dynamics
    Wilberforce, Tabbi
    Alaswad, Abed
    ENERGY, 2023, 263
  • [9] Computational Fluid Dynamics Analysis for Wind Turbine Tunnel on Train
    Ganapathi R.
    Jayashree R.
    Harinarayana T.
    International Journal of Vehicle Structures and Systems, 2024, 16 (02) : 302 - 305
  • [10] COMPUTATIONAL FLUID DYNAMICS TURBULENCE AND WAKE STUDY OF A UTILITY-SCALE ROTATING THREE-BLADE HORIZONTAL AXIS WIND TURBINE
    Al-Qarishey, Hussein
    Fletcher, Robert W.
    Abd Alkareem, Elaf
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 8B, 2021,