PIECEWISE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENTS FOR STOKES PROBLEM IN ANY DIMENSIONS

被引:19
|
作者
Wei, Huayi [1 ,2 ]
Huang, Xuehai [3 ]
Li, Ao [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Stokes problem; divergence-free nonconforming virtual elements; local energy projector; pressure-robust virtual element method; reduced virtual element method; CONTINUITY; GALERKIN;
D O I
10.1137/20M1350479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Piecewise divergence-free nonconforming virtual elements are designed for Stokes problem in any dimensions. After introducing a local energy projector based on the Stokes problem and the stabilization, a divergence-free nonconforming virtual element method is proposed for Stokes problem. A detailed and rigorous error analysis is presented for the discrete method. An important property in the analysis is that the local energy projector commutes with the divergence operator. With the help of a divergence-free interpolation operator onto a generalized Raviart-Thomas element space, a pressure-robust nonconforming virtual element method is developed by simply modifying the right-hand side of the previous discretization. A reduced virtual element method is also discussed. Numerical results are provided to verify the theoretical convergence.
引用
收藏
页码:1835 / 1856
页数:22
相关论文
共 50 条
  • [41] A nonconforming virtual element method for the Stokes problem on general meshes
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 : 694 - 711
  • [42] Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme
    Kanschat, Guido
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (07) : 941 - 950
  • [43] Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations
    Montlaur, A.
    Fernandez-Mendez, S.
    Huerta, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 57 (09) : 1071 - 1092
  • [44] ROBUST GLOBALLY DIVERGENCE-FREE WEAK GALERKIN METHODS FOR STOKES EQUATIONS
    Chen, Gang
    Feng, Minfu
    Xie, Xiaoping
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2016, 34 (05) : 549 - 572
  • [45] A discontinuous Galerkin method for Stokes equation by divergence-free patch reconstruction
    Li, Ruo
    Sun, Zhiyuan
    Yang, Zhijian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (04) : 756 - 771
  • [46] The Stokes complex for Virtual Elements in three dimensions
    da Veiga, L. Beirao
    Dassi, F.
    Vacca, G.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (03): : 477 - 512
  • [47] Divergence-free meshless local Petrov–Galerkin method for Stokes flow
    Mahboubeh Najafi
    Mehdi Dehghan
    Božidar Šarler
    Gregor Kosec
    Boštjan Mavrič
    Engineering with Computers, 2022, 38 : 5359 - 5377
  • [48] DIVERGENCE-FREE SCOTT-VOGELIUS ELEMENTS ON CURVED DOMAINS
    Neilan, Michael
    Otus, Baris
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 1090 - 1116
  • [49] DIVERGENCE-FREE FINITE ELEMENTS ON TETRAHEDRAL GRIDS FOR k ≥ 6
    Zhang, Shangyou
    MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 669 - 695
  • [50] A note on the approximation properties of the locally divergence-free finite elements
    Liu, J.
    Cali, R.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2008, 5 (04) : 693 - 703